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Abstract—Current backbone networks are designed to protect
a certain pre-defined list of failures, called Shared Risk Link
Groups (SRLG). A common assumption is to ignore the failures
not part of an SRLG as they assume to be extremely rare events;
therefore, the list of SRLGs must be defined very carefully.
The list of SRLGs is typically composed of every single link
or node failure. It has been observed that some type of failure
events manifested at multiple locations of the network, which
are physically close to each other. Such failure events are called
regional failures, and are often caused by a natural disaster.
The number of possible regional failures can be very large, thus
simply listing them as SRLGs is not viable solution. In this study
we focus only to every regional failure with a shape of disk
that do not contain network nodes. We provide a fast systematic
approach for generating a list of SRLGs the protection of which
is essential to increasing the observed reliability of the networks.
According to some practical assumptions this list is very short
with O(|V |) SRLGs in total, and can be computed very fast, in
O(|V | log |V |).

I. INTRODUCTION

Current backbone networks are built to protect a certain list
of failures. Each of these failures (or termed failure states) are
called Shared Risk Link Groups (SRLG), which is a set of links
that is expected to fail simultaneously. The network is designed
to be able to automatically reconfigure in case of a single
SRLG failure, such that every connection further operates after
a very short interruption. In practice it means the connections
are reconfigured to by-pass the failed set of nodes and links.
The list of SRLGs must be defined very carefully, because not
getting prepared for one likely simultaneous failure event the
observed reliability of the network significantly degrades.

On one extreme is listing every single link or node failure
as an SRLG. Often there is a known risk of a simultaneous
multiple failure that can be added as an SRLG, for example
if two links between different pair of nodes traverse the same
bridge, etc. On the other hand, we have witnessed serious
network outages because of a failure event that takes down
almost every equipment in a physical region as a result
of a disaster, such as weapons of mass destruction attacks,
earthquakes, hurricanes, tsunamis, tornadoes, etc. For example
the 7.1-magnitude earthquake in Taiwan in Dec. 2006 caused
simultaneous failures of six submarine links between Asia and
North America and hurricane Sandy in 2012 cased a power
outage that silenced 46% of the network in the New York
area. These type of failures are called regional failures. It is
still a challenging open problem how to prepare a network to
protect such failure events, as their location and size is not
known at planning stage. In the study we propose a solution
to this problem with a technique that can significantly reduce

the number of possible failure states that should be added as
an SRLG to cover all regional failures that does not affect any
node.

In practice, regional failures can have any location, size
and shape. It is a common best practice to fix the size
or shape of regional failures, for example as cycles with
given size (also called disk) [1]. Another approach to analyse
the network vulnerability against regional failures is using
probabilistic failure models, where each link in the SRLG has
some probability to fail [2].

In this study we show an efficient way to generate the
SRLGs of single regional failures which erase the network el-
ements in a circular area and do not affect nodes. Based on the
model and assumptions described in Section II, we have shown
that with these assumption the number of SRLGs is small,
O(|V |), in typical backbone network topology, and can be at
most O(|E ||V |) in an artificial worst case scenario. We propose
a systematic approach based on computational geometric tools
that can generate the list of SRLGs in O(|V | log |V |) steps on
typical networks.

We believe this result is a step towards filling the gap
between the conventional SRLG based pre-planned protection
and regional failures.

II. MODEL, ASSUMPTIONS AND RESULTS

We model the network as an undirected geometric graph
G(V ,E) with n = |V | nodes and m = |E | edges, we assume
n ≥ 3. The nodes of the graph are embedded as points in the
Euclidean plane, and the edges are embedded as line segments.
The position of node v is denoted by (vx , vz ). A disk failure
k(x, y,r ) is a circle with a centre point (x, y) and radius r .
The failure is modelled as every interior node and edge with
interior part is erased from the graph.

Let K0 denote the set of possible disk failures that do not
have any node of V in interior. We call K0 as link failures.
Clearly, |K0| is infinite. Recall that our task is to generate a set
of SRLGs, thus instead of a disk failure k ∈ K0 we are rather
interested in the set of links denoted by mk , interior to k.
Let k1,k2 ∈ K0 be two disk failures such that mk1 ⊂ mk2 . We
assume if the network can survive failure of k2 it can survive
k1 as well. Thus we focus on computing of the set M0 of
inclusion-wise maximal SRLGs caused by elements of K0.

Observation 1. For any k1 ∈ K0 there exists a k2 ∈ K0 such
that k1 ⊆ k2 and k2 has at least 2 points of V on its boundary.

Let K u,v
0 be the set of disks from K0 which have both nodes

u and v on the boundary. According to Obs. 1, it is enough to



determine the maximal SRLGs caused by disks in ∪u,v∈V K u,v
0 .

Let denote D0 = (E0,V ) the Delaunay triangulation [3] on
the set of nodes. An important observation is the following.

Observation 2. K u,v
0 is non-empty iff {u, v} is an edge of the

D0 = (E0,V ) Delaunay triangulation.

Let denote M u,v
0 the set of maximal elements among

SRLGs caused by the elements of K u,v
0 . Clearly, sets M u,v

0
and M w,z

0 are not necessarily disjoint and their elements are
not necessarily globally exclusion-wise maximal.

This gives us the idea to solve the problem according to
the following plan. First generate the D0 = (E0,V ) Delaunay
triangulation. After that for every {u, v} ∈ E0 generate sets
M u,v

0 . Finally compute M0 by gathering the globally maximal
elements of sets M u,v

0 .
Use the parameters θ0 and τ0 for the maximum number of

edges crossing the circumcircle of a Delaunay triangle, and for
the maximum number of circumcircles of Delaunay triangles
crossed by an edge, respectively.

Using the previous plan and the specific properties of the
Delaunay triangulation we proved the next theorem.

Theorem 1. M0 can be computed in O(n(logn+θ3
0τ0)) time,

and has O(nθ0) elements, each of them consisting of O(θ0)
edges.

Corollary 1. Assuming θ0 is upper bounded by a constant
and τ0 is O(logn), M0 can be computed in O(n logn) time,
and the total length of it is O(n).

A graph family may have O(n3) single regional failures and
we managed to give an artificial graph family, which has Θ(n3)
of them. However, we are convinced that θ0 is small in case
of typical backbone networks and there exists a small constant
c that it never exceeds and thus |M0| ≤ cn.

III. THE ALGORITHM

Since the Delaunay triangulation itself has an optimal
O(n logn) calculation time, the best complexity our approach
can reach is O(n logn).

In order to achieve the O(n logn) typical time complexity
on the one hand we needed to prove that m is not large.
Fortunately:

Observation 3. The number of edges is O(nθ0).

On the other hand when calculating the edge sets covered by
the circumcircles of Delaunay triangles instead of intersecting
an edge with all circumcircles we managed to intersect it
only with "close" circumcircles due to Lemma 1; and when
eliminating the redundant elements from the lists M u,v

0 , we
needed to compare a list with only O(τ0) other lists.

Lemma 1. The set Te of the Delaunay triangles having
circumcircles covering edge e is connected in the sense that
from every element of Te one can reach every element of Te

through triangles having common edge.

Algorithm 1: Generating the SRLGs of the single regional
failures

Data: G = (V ,E)
Result: The set M0 of SRLGs of maximal single

regional failures.
1 D0 = (V ,E0) ←DELAUNAY(V );
2 for {u, v} ∈ E0 do
3 some preparation

4 E i
u,v ← GETEDGESETS(D0 = (V ,E0),E);

5 for {u, v} ∈ E0 do
6 GENERATE M u,v

0

7 M0 ← ELIMINATEREDUNTANTS(M u,v
0 ,∀{u, v} ∈ E0);

return M0

Algorithm 1 is a sketch of the main ideas. At line 1 the
Delaunay triangulation is computed in O(n logn) time. In
lines 2 and 3 we do some preparation in constant time for
every {u, v} Delaunay edge, such as determining the Delaunay
triangles t 1

u,v and t 2
u,v having [u, v] as their edge (if {u, v} is

on the convex hull of V , we treat it specially). Let C i
u,v be

the circumcircle of t i
u,v , and E i

u,v be the set of edges crossing
C i

u,v (see Fig. 1).
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Fig. 1: Example of a Delaunay-edge {u, v} with C 1
u,v and C 2

u,v .
Here E 1

u,v = {{a,b}, {c, v}}, E 2
u,v = {{a,b}, {c, v}, {c, w2}}.

In line 4 we calculate E i
u,v simultaneously for all {u, v} ∈ E0

in O(nθ2
0) time. In lines 5 and 6 we generate sets M u,v

0 , each
in O(θ2

0) time. Finally, in line 7 M0 is calculated from sets
M u,v

0 in O(nθ3
0τ0) time.

According to these results we can derive Theorem 1.
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