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Abstract—Shared Risk Link Group (SRLG) is a failure the
network is prepared for, which contains a set of links subject to
a common risk of single failure. During planning a backbone
network, the list of SRLGs must be defined very carefully,
because leaving out one likely failure event will significantly
degrade the observed reliability of the network. Regional failures
are manifested at multiple locations of the network, which are
physically close to each other. In this paper we show that
operators should prepare a network for only a small number
of possible regional failure events. In particular, we give a fast
systematic approach to generate the list of SRLGs that cover
every possible circular disk failure of a given radius r . We show
that this list has O((n+x)σr ) SRLGs, where n is the number of
nodes in the network, x is the number of link crossings, and σr
is the maximal number of links that could be hit by a disk failure
of radius r . Finally through extensive simulations we show that
this list in practice has size of ≈ 1.2n.

I. INTRODUCTION

Backbone networks are designed to protect a certain pre-
defined list of failures, called Shared Risk Link Groups
(SRLG)1. SRLG describes the relationship between links with
a shared vulnerability. For example links with shared fibre ca-
ble or conduit have a chance to fail simultaneously, or network
devices with shared power sharing, etc. The SRLGs can subtly
cover the network, as each link could belong to several SRLGs.
Unfortunately, SRLGs are not self-discoverable in practice [2],
thus the mapping of links to SRLGs should be defined by the
network operators. Operators must very carefully define the
list of SRLGs, because leaving out one likely simultaneous
failure event will significantly degrade the observed reliability
of the network. The great number of serious network outages
witnessed in the last decades [3]–[6] present clear evidence
that selecting the proper list of SRLGs is still a challenging
problem to solve [7]–[15]. To fill this gap in reliable network
design, this paper proposes a systematic approach selecting
the list of SRLGs. The general idea in defining SRLGs is
that links close to each other have a chance for simultaneous
failure. Thus we list sets of links close to each other. The
main finding of this study that surprisingly the number of such
SRLGs is not too high in practice.

After the list of SRLGs are defined, the network is designed
to be able to recover in case of a single SRLG failure,
such that every connection operates again after a very short
interruption. Current backbone networks are required to fulfill

1First introduced in [1].

a very high level of service availability, and they can handle
an arbitrary list of SRLGs. The only practical limitation is
that the list of SRLGs cannot be extremely long to keep
the routing algorithms, the failure localization scheme, and
the failure states scalable. There is no performance guarantee
when a network is hit by a failure that involves links which
are not a subset of an SRLG. Thus, the best practice is to
list every single link or node failure as an SRLG. Here the
concept is that the failure first hits a single network element
for whose protection the network is already pre-configured.
After the failure new SRLGs can be added to protect a
possible multiple failure. The limitation of this approach was
well studied in [7]–[15]. It turned out that the network can
have serious outages when almost every equipment in a large
physical region gets down as a result of a disaster, such as
earthquakes, hurricanes, tsunamis, tornadoes, etc. For example
the 7.1-magnitude earthquake in Taiwan in Dec. 2006 caused
simultaneous failures of six submarine links between Asia and
North America [3], the 9.0 magnitude earthquake in Japan on
March 2011 impacted about 1500 telecom switching offices
due to power outages [4] and damages of undersea cables, the
hurricane Katrina in 2005 caused severe losses in Southeastern
US [5], hurricane Sandy in 2012 caused a power outage which
silenced 46% of the network in the New York area [10],
[16]. Heavy rain falls, or in general weather-based region
disruptions, can bring out correlated temporal failures of high
capacity wireless links (as e.g., in Wireless Mesh Networks)
in a small region. Another important reason for disruptions
on a massive scale the network operators need to be prepared
is related to intentional human activities, such as bombing or
use of weapons of mass destruction attacks, electromagnetic
pulse attacks. Electromagnetic pulse attack is an intense energy
field that can instantly overload or disrupt numerous electrical
circuits, thereby affecting networking equipments within a
large geographic area [17]. Submarine cables are vulnerable
to human activities such as fishing, anchors and dredging [18].
These types of failures are called regional failures which are
simultaneous failures of nodes/links located in specific geo-
graphic areas [7]–[15]. It is still a challenging open problem
how to prepare a network to protect against such failure events,
as their location and size is not known at planning stage.
Intuitively, the number of possible regional failures can be
very large. In the paper we propose a solution to this problem
with a technique that can significantly reduce the number of
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possible failures that should be added as SRLGs to cover all
regional failures.

A regional failure is defined as a failure of multiple network
elements in a geographic area, which can have any location,
size and shape. We will consider the size of the regional
failure as the most important property. To measure the size
of a regional failure we compute the smallest circular disk
that covers every failed link, and the radius of this circular
disk represents its size. In this study we are interested in
enumerating the SRLGs of regional failures with a given
maximum size. We assume each SRLG represents a worst case
scenario the network must be prepared for. For example when
each connection is assigned with an SRLG-disjoint protection
path. In our scenario there is no need to have an SRLG which
is a subset of an other SRLG. In particular we are interested in
two versions of the problem. In the first version we list every
possible failures the network can have due to a circular disk
failure of a given radius r . In the second version of the problem
we assume the radius of the failure is not a network wide
parameter, but depends on the area. For example the radius
is larger on flat regions, and smaller in the hilly area. In this
case we list every possible circular disk failures with radius
at most r , and leave the operator to filter out the unrealistic
ones.

The main contribution of this paper is a reduction of the
number of SRLGs subject to regional failures by applying
computational geometric tools based on the following two
assumptions: (1) The network is a geometric graph G(V ,E)
embedded in a 2D plane, and n = |V | denotes the number of
nodes in the network. (2) The shape of the regional failure is
assumed to be a circular disk of radius r and arbitrary center
position. We show that with these assumptions:

• The number of SRLGs is small, close to 1.2n in a typical
backbone network topology, which surprisingly does not
depends on the radius r .

• We refine the bound on the number of SRLGs by intro-
ducing some practical properties of the graph: x which
is the number of link crossings of the network, σr is
the maximal number of links that could be hit by a disk
failure of radius r , and yr which is the total number of
link pairs whose distance is at most 2r . In backbone
networks x is a small number as typically a network
node is also installed on each link crossing (similarly
to road networks [19]), while σr represents a density of
the topology, which should not depend on the network
size. Using these parameters the number of SRLGs is
Θ((n + x)σr ) or Θ(m + y). We also give an artificial
example to illustrate that these bounds are tight.

• We provide faster algorithms to enumerate the SRLGs
that runs in O((n +x)2σ3

r ) time.
• Compared to prior art we handle parallel edges and

colinear node triples.

Using the obtained SRLG list, network operators can design
their networks to be protected against regional and random
failures. Backbone networks designed according to our new

failure model should have higher reliability, and leave way less
failures to be recovered with the convergence of higher layer
intra-domain routing protocols (IS-IS, OSPF) within the next
few seconds, minutes or hours after the failure. We believe the
paper contributes to closing the gap between the conventional
SRLG based pre-planned protection and regional failures.

The paper is organized as follows in Sec. II we overview the
related work and explain how our approaches can contribute to
the prior art, in Sec. III we provide a mathematical definition
of the problem and show some basic results. In Sec. IV we
provide bounds on the number of SRLGs, which we improve
in Sec. V and present our algorithm. In Sec. VI we present
our numerical evaluation on real backbone networks. Finally
Sec. VII concludes the paper.

II. RELATED WORK

With somewhat different motivation similar computational
geometric ideas were used in papers focusing on the most
vulnerable points of a physical infrastructure (communication
networks or power grids [20]) to regional failures or attacks.
Our objective is more general as we want to enumerate all
candidate failures, instead of searching for the most vulnerable
according to some metric. The network is embedded in the
Euclidean plane and the failures are modelled either as a disk
around its epicenter (circular) [7], [21], [22], line segments
[7], ellipse [23] or polygons (rectangle, square, or equilateral
triangle) [23]. Technically these papers also list the candidate
failures and evaluate the vulnerability metric of the residual
network in case of each candidate failure. Note that, our
approach computes O((n + x)σr ) SRLGs (in practice σr is
constant and x ¿ n), while the best known general worst
case bound was O(n4) [21], which would be O((n+x)2) using
our estimations with x. Besides, our approach can be used to
compute the list of candidate failures for circular failures with
varying radius.

The following vulnerability metrics are investigated: (1) the
point with the maximum number of affected links [7], [21],
which is σr . (2) the point with the maximum average two
terminal reliability between every node-pair [7], [21]–[23]. (3)
the point with the maximum average all-terminal reliability
[13], [22] which allows the identification of network areas
that can disconnect any component in the network. (4) the
point with the maximum average value of the maximum flow
between given pair of nodes [7]. (5) the point with maximal
average shortest path length between every pair of nodes [13],
[23], (6) survivability as a measure of weighted spectrum
based on the eigenvalues of the normalized Laplacian of a
graph [13], (7) network criticality which is determined from
the trace of the inverse of the Laplacian matrix and can be
related to the node and link betweenness [13].

A special case of our problem is investigated in [24] where
the goal is to list all the spatially-close fiber segments. They
model links not only a straight line segment but series of line
segments where the geographic location of the corner points
are known. In our model the corner points can be treated as
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degree 2 nodes, and with our approach the grouping of the
spatially-close fiber segments can be directly computed.

The idea of defining SRLGs for disasters was also proposed
in [11]; however the SRLGs (called called disaster zones) were
defined manually. For example, in the 24-node US topology
they determine 15 distinct SRLGs for earthquakes and 19
distinct SRLGs for tornadoes by matching a seismic hazard
map and a tornado activity map with US topology considering
that the damage of earthquakes and tornadoes (clustered in
a region) may span up to 96 and 160 km, respectively.
Besides the 10 most-populated US cities and Washington DC
as possible mass destruction targets are added. It is in total 45
SRLGs, while our approach automatically lists 20-30 failures
depending on the radius (see also Fig. 8b).

Our approach can be used as a tool for any studies where
the set of potentially vulnerable geographic cuts are taken as
input, such as for multilayer networks [25], SRLG disjoint
paths [26], etc.

Related to our work is the research in computational ge-
ometry on the smallest intersecting ball problem [27], [28],
which has its origins in the classical 19th century problem of
Sylvester [29] about the smallest enclosing circle for a given
set of points in the plane.

III. PROBLEM DEFINITION AND BASIC RESULTS

The input is a real number r > 0 and an undirected graph
G = (V ,E) embedded in the 2D plane, where V denotes the set
of nodes and E the set of edges (which are also called links,
line segments or intervals in geometric proofs). Let n := |V |
and m := |E |. We assume n ≥ 3. The edges of G are embedded
as line segments, which we call intervals in the geometric
proofs. A disk with centre point p covers an edge e if its
distance to p is at most r .

Definition 1. A regional failure F is a non-empty subset of
E , for which there exists a disk with radius r covering every
edge in F .

Note that the failure of node v is modelled as the failure
of all edges incident to node v . Therefore listing the failed
nodes beside listing failed edges would not give us additional
information from the viewpoint of connectivity.

Definition 2. Let Hr be the set of regional failures of a
network for a given radius r .

According to Def. 1 a subset of a regional failure is also a
regional failure. Thus, Hr is the downward closed set minus
the empty set.

An SRLG is a regional failure the network is prepared for.
Recall the network can recover if an SRLG or a subset of links
(and nodes) in SRLG fails simultaneously. In other words if a
regional failure F is listed as an SRLG, then there is no need
to list any subset of the links F ′ ( F as a new SRLG. Our
goal is to define a set of SRLGs which covers every possible
regional failure, and which is of minimal size.

Definition 3. Let Sr ⊆ 2E denote the set of SRLGs, for which

(a) (b) (c)

P1

P2

(d) N (e,r ) of an
edge e

Fig. 1. Case (a),(b) and (c) of Thm. 1 and the neighbourhood N (e,r ) of an
edge e.

Sr = {F is a regional failure and there is no

regional failure F ′ such that F ′ ) F } . (1)

In other words the set of SRLGs Sr is a set of failures
caused by disks with radius at most r in which none of the
failures is contained in another. Note that Hr is the set of
regional failures which is the downward closed extension of
Sr minus the empty set. In combinatorics a Sperner system is a
family of sets in which none of the sets is contained in another.
A Sperner family is also sometimes called an independent
system or a clutter. Clearly, Sr is a Sperner system. Due to
the minimality of SRLGs we have the following proposition.

Proposition 1. For each SRLG F ∈ Sr , F ⊆ E , there is a
circular disk c of radius r such that F is exactly the set of
edges covered by c.

Let r be a very small positive number. In this case the
list of possible regional failures consists of every single link
or node failure and link crossings. In other words our model
is a generalisation of the ’best practice’. The corresponding
Sperner system can be the set of single node failures, i.e.
|Sr | = n + x, where is x is the number of edge crossings.
Informally speaking protecting node failures is sufficient to
protect link failures as well.

Our aim is to determine the set Sr . At first glance it is
not clear that the cardinality of Sr is ’small’. We will prove
polynomial upper bounds on |Sr |, and we will show that |Sr |
is ∼ n in practice.

To estimate the size of the SRLG list, let σr denote the
maximum number of edges a disk with radius r can cover
in the plane, i.e. for every failure F caused by a disk with
radius r , |F | ≤σr . We observe that if σr =O(logn) then there
is a polynomial blowup when we switch from Sr to Hr , as
|Hr | ≤ |Sr |2σr . We often treat Sr as a compact representation
for Hr . It is also immediate that from Hr we can obtain Sr

by O(|Hr |2) comparisons of subsets of E .
We say a disk c covers a set of edges Ec , if it covers all

the edges in Ec . Note that several disks can result the failure
of the same set of edges.

First we give a slight variant of Lemma 9 from [7]. Our
assumptions allow somewhat more general topologies with
more than 2 collinear points. The segments e ∈ H are assumed
to be nondegenerate.

Theorem 1. Let r be a positive real, and H be a nonempty
set of intervals (i.e. edges) from R2 which is covered by a
circular disk of radius r . Then there is a disk c of radius r
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(a) ∀e ∈ E and ∀ f ∈ E

v

e

(b) ∀e ∈ E and ∀v ∈V

e

(c) ∀e ∈ E

Fig. 2. The disk failures examined in Thm. 1

which covers the intervals of H such that at least one of the
following holds (see Fig. 1 for illustrations).
(a) There are two non parallel intervals in H such that c
intersects both of them in a single point. These two points are
different.
(b) There are two intervals in H such that c intersects both
of them in a single point. These two points are different, and
one of them is an endpoint of its interval.
(c) Disk c touches the line of an interval e ∈ H at an endpoint
of e.

Proof: For a line segment e on the plane and a nonnega-
tive real number r the r -neighborhood2 N (e,r ) of e is defined
as the set of all points P on the plane which have distance at
most r to (some point of) e. It is immediate that N (e,r ) is a
closed convex subset (see Fig. 1d) of the plane.

Consider the boundary B of the intersection

∩e∈H N (e,r ). (2)

The points of B are obviously in the union of the boundaries
of the neighbourhoods N (e,r ), where e ∈ H . The union is
composed of a finite number of line segments and half circles.
The circular arcs belong to circles of radius r centered at
endpoints of line segments e ∈ H . We distinguish two cases.

(1) B has a point R which is on a halfcircle arc of the boundary
on N (e,r ) for some e ∈ H . Let cR be the disk of radius r
centered at R. If R is an endpoint (P1 or P2 in Fig. 1d) of the
halfcircle, then (c) is satisfied for cR . We can thus assume that
R is an inner point of the halfcircle connecting P1 and P2, and
Pi 6∈ B . From the fact that B is closed, we obtain that there
exists a point R ′ on the circular arc RP2 which is in B , but
no point of the open R ′P2 arc is in B . Then there must be an
f ∈ H such that N ( f ,r ) passes through R ′ but does not contain
a larger arc R ′R ′′ from R ′P2. Then R ′ is on the boundary of
N ( f ,r ). We argue that (b) holds for cR ′ and the intervals e, f .
This is immediate if the tangent lines to N (e,r ) and N ( f ,r )
at R ′ are different. If they are the same line ` then e and f
must be in different halfplanes defined by `, hence e ∩ f =;
and hence (b) holds for cR ′ . This reasoning covers case (1).
Note that we can also assume now that |H | > 1.

(2) No point of B is on a circular arc form the boundary of
N (e,r ), with e ∈ H . Then B is a (possibly degenerate) polygon
composed of some line segments. Let R be a vertex of polygon
B , and e ∈ H be a segment such that R is an interior point of

2called hippodrome in [21].

Fig. 3. An example topology (k = 4) where the number of SRLGs is Ω(m2)
or Ω((n +x)σr ) for circular disk failures.

one of the line segments on the border of N (e,r ). Let ` be
the line of this latter segment. The fact that R is a vertex of B
implies that there must be an other segment f ∈ H such that
one of the line segments on the boundary of N ( f ,r ) passes
through R and the line `′ of this segment is different from
`. Indeed, otherwise for every g ∈ H there would be an open
interval form ` containing R in N (g ,r ) which contradicts to
the extremality of R. As e is parallel to ` and f is parallel to
`′, we infer that (a) holds for cR .

IV. BOUNDS ON THE NUMBER OF SRLGS

Lemma 1. Let H ′ be a set of intervals from R2, |H ′| ≤ 2. Then
every circular disk described in Thm. 1 can be determined in
O(1) time.

Proof: Easy elementary geometric discussion of cases (a),
(b) and (c) of Thm. 1. See Fig. 2 for illustration. Note that
there can be at most 4 circles that intersect two line segments
as shown on Fig. 2(a), and at most two circles intersecting a
line segment and a single point as shown Fig. 2(b), and four
circles can touch a line at an endpoints as shown Fig. 2(c).

From Thm. 1 and the argument of Lemma 1 we obtain the
following upper bound on the number of SRLGs.

Corollary 1. |Sr | ≤ 4
(m

2

)+4m +2mn. �

Note that, the graphs of Claim 1 demonstrate that above
bound is asymptotically tight.

A. Worst Case Graph

Claim 1. The graph sketched in Fig. 3 has at least n2

64 regional
failures of a radius k.

Proof: Here we construct a set of n segments whose graph
is planar (there are no edge intersections), and for a suitable
radius r it has at least n2

64 , in particular a quadratic number of,
incomparable failure events.3

Let k be a positive integer. We consider a collection of
4k axis parallel line segments in R2. We start out with the
four edges of the square of edge size k whose bottom left
corner is at the origin O = (0,0). We consider the bottom

3No attempt has been made to optimize the constant. In fact, a more
elaborate variant of the preceding construction gives n2

16 failure events.
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edge connecting O to (k,0), and put its copies translated i
units downwards, for i = 1, . . . ,k into our set of segments.
For example for i = 2 we obtain the segment from (0,−2)
to (k,−2). This way we obtained k segments. Similarly we
translate the upper edge (from (0,k) to (k,k)) of the square
by i units upwards for i = 1, . . . ,k. These are k additional
horizontal segments. We do the same in the vertical direction:
we consider k translates to the left of the left edge of our
starting square, and k translates to the right of the right edge
of the square. We have 4k nonintersecting line segments of
length k. The configuration for k = 4 is shown on Fig. 3.
Consider now a disk c = c(i , j ) of radius k centered at the
point (i , j ), where i , j are integers, 0 ≤ i , j ≤ k. We readily
see that c intersects exactly i of the right vertical segments
and k − i of the left vertical segments. Similarly c intersects
exactly j of the upper horizontal edges, and k− j of the lower
horizontal edges. We infer that no two disks of the form c(i , j )
can cover the same set of edges. This implies that there are
at least (k +1)2 failure events with radius k. The number of
vertices is n = 8k. The number of such failures is at least n2

64 .

B. Circular Disk Failures with Radius at Most r

In this subsection we take a more general model and assume
the radius of the failure is not a network wide parameter, but
depends on the area. Our goal is to enumerate every circular
disk failures for any radius at most r .

Definition 4. Let a disk c be smaller than disk c ′, if c has a
smaller radius than c ′, or if they have equal radius and the
centre point of c is lexicographically smaller than the centre
point of c ′.

Definition 5. Let F ⊆ E be a finite nonempty set of edges (not
necessarily a failure). We denote the smallest disk among the
disks covering F by cF and we say cF is the smallest covering
disk of F .

It is not difficult to see that cF always exists. The key idea of
tour approach that we can limit our focus only on the smallest
covering disks cF , ∀F ∈ Hr , and simply ignore the rest of
the disk failures. The consequence of the next theorem is that
the number of smallest covering disks cF , ∀F ∈Hr is not too
large.

Theorem 2. Let H be a nonempty set of intervals from R2 with
smallest covering disk cH . Then there exists a subset H ′ ⊂ H
with |H ′| ≤ 3 such that cH = cH ′ .

Thm. 2 would be trivial if smallest covering disks were
defined on sets of nodes because a triplet of non collinear
nodes defines a circle. In the proof in Appendix VIII-A we
show that this property holds for edges (considered as line
segments) too. Compared to the algorithm of Thm. 1 here we
not only shift the disks, but also shrink them.

Corollary 2.
∣∣∣∣ ⋃
0<r<∞

Sr

∣∣∣∣≤
(

m

3

)
+

(
m

2

)
+m = m3

6
+ 5m

6
. �

Theorem 3. Let H be a set of intervals from R2, |H | ≤ 3. Then
cH can be determined in O(1) time.

The proof is relegated to Appendix VIII-B.

Remark. Thm. 3 outlines an efficient algorithm for cH in
an exact symbolic computational setting. A good numerical
algorithm for approximating r and P is also possible: for a
positive real number r ′ we can efficiently test if

N (e1,r ′)∩N (e2,r ′)∩N (e3,r ′) 6= ;.

Indeed N (ei ,r ′) is a union of two half disks and a rectangle,
and the intersection of such objects is easily computable. Us-
ing such tests for emptiness, r can be approximated by binary
search as the smallest r ′ providing nonempty intersection.

Since the smallest covering disk of a triplet of edges can
be calculated in O(1) time, we could solve the problem by
processing O(m3) triplet of edges. However, we will achieve
better upper bounds on running time and of |Sr | with the help
of some further observations.

V. IMPROVED BOUNDS AND ALGORITHM TO ENUMERATE
THE SET OF SRLGS

Next, we define three practical parameters of the input to
better estimate the number of SRLGs.

yr is the total number of edge pairs whose distance is
at most 2r .

x is the number of link crossings of the network G .
σr is the link density of the network which is measured

as the maximal number of links that could be hit by
a disk failure of radius r .

In backbone networks x is a small number as typically a
network node is also installed on each link crossings [19],
while the link density σr practically should not depend on the
network size. We also know that σr is at least the maximal
nodal degree in the graph. For simplicity we assume that edges
intersect in at most one point.

Definition 6. Let X be the set of points p which are not in
V and there exist at least 2 non-parallel edges crossing each
other in p. Let x = |X |.

Despite the fact that on arbitrary graphs x can be even
Θ(n4), in backbone network topologies typically x ¿ n be-
cause a switch is usually installed if two cables are crossing
each other4. This gives us the intuition that G is “almost”
planar, and thus it has few edges.

Claim 2. The number of edges in G is O(n+x). More precisely
for n ≥ 3 we have m ≤ 3n +x −6.

Proof: Let G ′(V ∪X ,E ′) be the planar graph obtained from
dividing the edges of G at the crossings. Since every crossing
enlarges the number of edges at least with two, |E ′| ≥ m+2x.
On the other hand, |E ′| ≤ 3(n +x)−6 since G ′ is planar. Thus
m ≤ |E ′|−2x ≤ 3n +x −6.

4Recent experimental studies give empirical evidence that real-world road
networks typically have Θ(

p
n) edge crossings [30].
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K

Fig. 4. Illustration to Thm. 4

Note that X can be computed in O(n + x logk n) expected
time, where k is a constant [19]. It is a randomized algorithm
which is called geometric graph planarization. For the sake of
simplicity we assume the planarized graph is simple. Since the
average running time is linear for practical network topologies,
we omit the complexity of computing the set of X from our
algorithms in enumerating the SRLGs.

Now we can develop an upper bound on the number of
SRLGs. Let yr denote the number of edge pairs whose
distance is at most 2r .

Corollary 3. |Sr | ≤ 12(n + yr ).

Proof: For case (a) of Thm. 1 we need to compute at most
4yr circles, for case (b) we have 4yr , and finally for case (c)
we have 4m ≤ 4(3n +x −6) < 12n +4yr , because x ≤ yr .

This bound is asymptotically tight as shown by the graphs
in Claim 1 because yr =O(n2).

The next theorem states, it is enough to process the edge
triplets in the neighbourhood with radius 3r of every point in
V ∪X .

Theorem 4. For every failure H ∈Hr there exists a disk c of
radius at most r covering H with centre point at distance at
most 2r from V ∪X .

The proof of the theorem can be found in Appendix VIII-C.

Theorem 5. Let r be a positive real number, F ∈Sr be a set
of line segments which can be covered by a disk of radius r .
Then there exists a segment e ∈ F and a disk c described in
Thm. 1 (disk c has radius r , covers F , intersects e in a single
point Q, and (a), or (b), or (c) holds with H = F ), such that
the centre point of c is at distance at most 2r from either an
endpoint of e or a point of crossing (of e and an other segment
f ∈ F ).

Proof: We proceed along the lines of the proof of Thm.
1. If we are in case (1) of the proof of Thm. 1, then (b) or
(c) holds for the statement of the theorem, as Q can be an
endpoint of a segment e ∈ F .

We may turn our attention to case (2) from Thm. 1. Then
K =∩e∈F N (e,r ) is a closed bounded convex set on the plane
whose boundary is a polygon composed of line segments. If
K has no interior points in the plane, then r is an optimal
covering radius for F . Then c = cF will be a suitable disk. In
fact the proof of Thm. 4 can be extended to show that the
requirements of Theorem 1 will be valid for cF in the place
of c. This follows from a simple but tedious analysis of the
Cases 1-4 of Theorem 3, which we omit here.

We may therefore assume that K has an interior point (see
also Fig. 4). Then K is a proper convex k-gon for some k ≥ 3,
hence there exists a vertex R of K with angle α ≥ π

3 . The
circle of radius r centered at R will meet the requirements of
the Theorem. Indeed, there will be then two segments e, f ∈ F
such that their supporting lines are tangent to c, and c is seen
at angle α from their point of intersection. Q will be the point
of tangency of e or f with c. See the last case in the proof of
Thm. 4 for further details.

Next we will give better upper bounds on the number of
SRLGs. As a consequence of Theorem 5, when considering
circular failures of radius r , then in a sense we may ignore
the points on the edges e ∈ E which are more than 3r away
from V ∪X . Consider the pairs (e, v) where e ∈ E , v ∈V ∪X ,
and v ∈ e. If we have an SRLG of radius r as in Theorem 5
with edge e such that the distance of c is at most 2r from
v , then the edges of this SRLG must intersect the disk of
radius 3r centered at v . This gives at most 15σr possibilities
for the other edge besides e in Theorem 5 (a) or (b) (see Fig.
5, where 15 circular disks of radius r cover a disk of radius
3r ). The number of pairs (e, v) can be counted by looking
at the contribution of node v : it will be deg v , where deg is
the degree in the planarized graph. The sum of the degrees is
twice the number of the edges of the latter graph, which is
O(n +x). Thus we have the following bound:

Corollary 4. |Sr | =O((n +x)σr ) . �

1
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12
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15

Fig. 5. A disk with radius 3r can be covered with 15 disks with radius r

This bound is asymptotically tight5 on the graphs in Claim
1 because σr = n

2 for r = k. Next we discuss how the list of
SRLGs can be generated.

Lemma 2. The set of SRLGs for circular disk failures of radius
r can be computed in O((n +x)2σ3

r ) time.

Proof: Briefly, for every pair of edges whose distance is
at most 2r , we generate the disks c of radius r described in
Lemma 1. Next, for each c we compute the set of edges F
covered by disk c. Then we save F as an SRLG in the list Sr ,
only if none of the SRLGs in Sr is a superset of F .

For implementing the algorithms we use the following data
structure. For each pair (e, v) where e ∈ E , v ∈V ∪X , and v ∈ e
we will store a lists of the edges which are within distance 3r
from node v . To do so, first we compute the distance between
every edge and every point in V ∪X . Overall, the above data

5No attempt have been made to optimize the constant.
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(a) r = 20 (b) r = 30 (c) r = 50 (d) r = 100 (e) r = 150

r σr yr |Sr |
50 7 243 37
70 7 301 37
90 7 338 38
110 7 408 38
130 7 481 38
150 8 546 35
170 8 590 34
190 8 635 37
210 8 705 38
230 12 758 35

(f) Table of results

Fig. 6. The set of SRLGs in the 33-node Italian network for various radius sizes. The network has n = 33 nodes, m = 56 links, and x = 4 edge crossings.

structure can be built up in O(m(n + x)) = O((n + x)2) steps,
and the lists have at most O(σr (n +x)) elements altogether.

For every pair (e, v) and an edge f from its list we form the
disks c of radius r (if there is any) covering this pair of edges
as in Theorem 5 (in particular, the center of c must be at most
2r from v). For a given pair (e, v) we have O(σr (n+x)) disks.

For each of these disks we compute the set of edges F .
Finally, we need to check if F is not a subset of any listed
SRLG, before we add F as a new SRLG to the list, and erase
every SRLG in the list that is a subset of F . This is done by
comparing F with every SRLGs in the lists, which requires
comparing O((n +x)2σ2

r ) pairs of segment sets (F,F ′).
Finally, to compare two SRLGs to test if they are subset of

each other requires O(σr ) steps. To do so, we need to assign
an order to the edges of the network and store the edges of
an SRLG as an ordered list.

Finally, based on Cor. 2 we give an upper bound on the
total number of circular disk failures with radius at most r .

Proposition 2.

∣∣∣∣∣ ⋃
0<r ′<r

Sr ′

∣∣∣∣∣=O((n +x)σ2
r ) . �.

Proof: We can use Theorems 2 and 4 and the fact that
a disk of radius 3r covers O(σr ) segments. From Theorem 2
we see that it suffices to construct disks of the form cH , for
sets of segments H of size at most 3. Then by Theorem 4 it is
enough to calculate for every v ∈V ∪X the smallest covering
disk of every set Ev containing an edge going through v and
containing 1 or 2 edges from the 3r neighbourhood of v . For
a fixed v we have O(σ2

r ) SRLGs, and the claim follows.

Theorem 6. The circular disk failures with radius at most r
can be computed in O((n +x)2σ5

r ) time.

Proof: According to Proposition 2 there are O((n+x)2σ4
r )

circular disk failures to examine, where each SRLG has at
most σr edges. A pair of candidate SRLGs (F,F ′) can be
checked in time O(σr ) for possible containment.

VI. NUMERICAL RESULTS

In this section, we present numerical results that demon-
strate the use of the proposed algorithms on some real
backbone networks. The algorithm was implemented in C++
using the Geometric Tools Engine, a library for computing
in the fields of mathematics, graphics and image analysis
(Wild Magic 5 distribution, version 5.13). The output of the
algorithm is a list of SRLGs so that no SRLG contains the

(a) r = 0.3, |Sr | = 25 (b) r = 0.5, |Sr | = 56 (c) r =p
2/2, |Sr | = 16

Fig. 7. The set of SRLGs of a 5×5 grid network.

other. The network topologies with the obtained list of SRLGs
for various radii are available online6.

Each SRLG in the obtained list of SLRGs S is visualized
by its smallest covering disk. According to Thm. 3 the smallest
covering disk is computed using at most 3 nodes or edges. The
different cases are shown with different colors: The red circles
go through 2 or 3 nodes, and the disks covering 1 node are
represented as red disks with radius r and the center being the
given node. The green disks have 3 edges on the boundary.
All other disks are violet.

Fig. 6 shows the Italian optical backbone network
with circular disk failures of three different radii r =
20,30,50,100,150km. For the smallest radius the SRLGs are
the nodes and the edge crossing points. In our bounds the
number of SRLGs were O((n + x)σr ), and σr increases with
the radius. Surprisingly, as the radius increases the number
of SRLGs does not increase, but stays close to n + x. This is
because the SRLGs which are subset of an other SRLGs are
filtered out. Note that our bounds are asymptotically tight for
the artificial networks on Fig. 3. In other words, it seems in
practical scenarios the number of SRLGs does not depend on
the radius.

To understand this phenomenon let us consider a perfect 2D
grid network of k ×k nodes, where the length of each edge
is 1. Until the radius is less than 1

2 only node failures must
be considered, as shown on Fig. 7a. The total number of such
failures is |Sr | = k×k. As the radius increases reaching 1

2 ≤ r <p
2

2 we have the SRLGs of every link with the neighbouring
links, and every facet (each square) of links, that is |Sr | =
3(k−1)×k−(k−1) in total (see Fig. 7b). As the radius further
increases to r =

p
2

2 the SRLGs will be every facets with the

6https://github.com/jtapolcai/regional-srlg
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neighbouring links, which is |Sr | = (k − 1)× (k − 1). Finally,
when r =

p
2

2 k we have only one SRLG covering every link
of the network, i.e. |Sr | = 1. This example illustrates that |Sr |
does not increase or decrease monotonously, and may have
local maxima and minima.

To understand the relationship between the radius and
the number of SRLGs we analyzed 6 real world backbone
networks: 3 European and 3 US topologies. We have plotted
the length of the SRLG list |Sr | compared to the radius of the
circular disk failure. Fig. 8 shows our results where σr the
maximal number of links in the SRLG is also listed. Clearly,
σr increases with the radius, however the number of SRLGs
slightly increases until 100-200 km radius and after that it
has a flat period with local maxima and minima and finally it
decreases as the radius becomes extremely large. Surprisingly
the number of SRLGs was never more than 2.3n for any
radius, and often it is less than the number of links. We also
plotted the SRLGs for failures of radius 200km. Note that,
in the European network the nodes are closer to each other
compared to US. The SRLGs are mostly node failures and
in the densely connected areas small sets of links. The list
of SRLGs obtained with our approach for the 24-node US
network covers the disaster zones for earthquakes, tornadoes,
and weapons of mass destruction attacks defined in [11].

Table I shows a comparison among the networks, where the
radius r is the length of the shortest edge in every network.
The columns are: network name, the number of nodes and
links and link crossings, the two link density metric σr , yr the
total number of edge pairs whose distance is at most 2r , the
number of SRLGs and running time. The runtime corresponds
to the slower algorithm which enumerates every circular disk
failure with radius at most r . It was measured on a commodity
laptop with Core i5 CPU at 1.8 GHz with 4 GB of RAM.

TABLE I
RESULTS ON SOME BACKBONE TOPOLOGIES FROM [31]

Network n m x σr yr |Sr | Runtime [s]
Pan-EU 16 22 0 5 44 14 0.131
German 17 26 0 7 69 15 0.28
EU 22 45 0 13 176 34 9.569
US [11] 24 42 0 8 124 24 1.233
US 26 42 0 10 122 25 5.668
EU (Nobel) 28 41 0 9 94 39 3.983
Italian 33 56 4 13 199 31 14.17
EU (COST266) 37 57 0 7 134 41 0.537
US 39 61 0 7 152 33 0.83
US (NFSNet) 79 108 0 9 217 92 7.102

VII. CONCLUSIONS

In this paper we view networks as geometric graphs and
propose a fast and systematic approach to enumerate the list
of possible link failures caused by regional disruptions. Our
approach assumes that the regional failure has a shape of disk
of a given radius. Although the number of possible regional
failures is infinite, we show that under reasonable and realistic
assumptions the list of failures to be considered is short, it
is basically linear in the network size. We present two fast

polynomial time algorithms, the first lists every disk failure of
a fixed radius. Its main idea is to move a disk of radius r to
every candidate location. The second algorithm lists every disk
failure with radius at most r . This allows a more sophisticated
regional failure model where different radii of failure are used
at flat or hilly areas. It also helps in understanding the number
of SRLGs compared to the network size. The algorithm moves
and shrinks the disks at every candidate location. Through
numerical evaluation of several specific networks we show that
the algorithms are fast enough for network design problems
and the obtained list of SRLGs is surprisingly small ≈ 1.2n.
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VIII. APPENDIX

A. Proof of Thm. 2

We need the following simple lemma.

Lemma 3. Let C1,C2,C3 be convex subsets of the plane R2

such that t = C1 ∩C2 ∩C3 is a line segment with more than
1 point. Then there exist two indices i , j such that Ci ∩C j is
collinear.

Proof: Let R,S be two different points of t . If the
statement is false, then the pairwise intersections Ci ∩C j all
contain points not on the line of t . Without loss of generality
we may assume that C1 ∩C2 and C1 ∩C3 contain points P2

and P3 from the same open halfplane defined by the line of t .
If P3 = P2 then we obtain P2 ∈ t which is a contradiction. We
infer that P3,P2,R,S are four different points. Radon’s lemma
(Theorem 1.3.1 in [32]) can be applied to them. The Radon
point X will be on one hand on the open halfplane defined by
the line of t and containing the Pi . On the other hand

X ∈C1 ∩C2 ∩C3.

This gives a contradiction.
Proof of Thm. 2: Let r be the radius of cH . We have

then
∩e∈H N (e,r ) 6= ;, (3)

but ∩e∈H N (e,r ′) =; for any r ′ < r .
The statement of the theorem is immediate, if H has at most

2 sets. Suppose now that |H | ≥ 3. If for every 3-element subset
H ′ of H there exists a radius rH ′ < r such that ∩e∈H ′N (e,rH ′ ) 6=
;, then with r∗ = maxrH ′ we have ∩e∈H N (e,r∗) 6= ; by the
planar Helly’s theorem (Theorem 1.3.2 in [32]) applied to the
convex sets N (e,r∗), hence H can be covered by a disk of
radius r∗, which is impossible. We obtain that there exists a
3 element subset H ′ of H such that the radius of cH ′ is r .

Note also, that the intersection on the left of (3) is nece-
sarily a (possibly degenerate) nonempty closed bounded line
segment s. This follows from the fact that the intersection is
a nonempty closed bounded convex subset without an interior
point. Indeed an interior point would allow a covering radius
for H which is less than r . Note also that the lexicographically
smallest (end)point P of s is the center of cH .

We observe next that for H ′ above the covering radius r is
also minimal, hence the intersection ∩e∈H ′N (e,r ) = s′ is also
a line segment which contains s. If the smallest point of s′ is
P then we are done, as P will be the center of cH ′ . We may
therefore suppose that s′ contains a point Q smaller than P .

Suppose that H ′ = {e1,e2,e3}. We verify that there exist i , j ,
1 ≤ i < i ≤ 3, such that the intersection N (ei ,r )∩N (e j ,r ) is a
subset of the line of s′. Indeed, this follows from Lemma 3
applied to the neighborhoods N (ei ,r ). We have t = s′.

We conclude by noting that there exists an edge f ∈ H such
that N ( f ,r ) does not have a point on the line of s′ which is
smaller than P (otherwise s itself had such a point). These
imply that the lexicographically smallest point of N (ei ,r )∩
N (e j ,r )∩N ( f ,r ) is P and the proof is complete.

P Q

(a) Case 2a (b) Case 2b

Fig. 9. Illustration of the cases of Thm. 3

B. Proof of Thm. 3

Let H be a set of intervals from R2, |H | ≤ 3. We show that
cH can be determined in O(1) time.

Again, Thm. 3 would be trivial in case of nodes instead of
edges.

Proof of Thm. 3: We assume that the intervals e ∈ H
are given as input by their endpoints whose coordinates are
real numbers. We allow degenerate segments consisting of just
one point, too. In the complexity count we use the unit cost
arithmetic model of computation, where the cost of a basic
operation with real numbers is 1. The basic operations allowed
here are +,−,∗,/ and taking the nonnegative square root of a
nonnegative real number.

Case 1. The intervals of H have a point in common. Then cH

is the lexicographically smallest point of ∩e∈H e. This point is
easy to compute in O(1) time.

From here on we have |H | > 1, and ∩e∈H e =;. Henceforth
let r stand for the radius of cH .

Fact. As before, the intersection s = ∩e∈H N (e,r ) is a
collinear set. It is either a single point P , or a nondegenerate
line segment PQ with P,Q different points of the plane. Indeed,
otherwise s would have an interior point. That point would be
closer than r to every e ∈ H .

Case 2. |H | = 2.

Subcase 2a. |H | = 2, H = {e1,e2}, s = PQ. Then e1,e2 are
parallel segments, 2r is exactly the distance of their respective
lines, and P,Q is easily computed. The center of cH will be
the lex-smaller of P and Q (see also Fig. 9a).

Subcase 2b. |H | = 2, H = {e1,e2}, s is a single point P . This
is possible only if N (e1,r ) and N (e2.r ) touch each other. An
endpoint P1 of e1 is at distance 2r from e2, or an endpoint
of e2 is at distance 2r from e1. In the former subcase a
candidate disk for cH will be the disk whose diameter is the
segment connecting P1 to the unique closest pont X of P1 to
e2. Similarly we have to consider the smallest circles passing
through an endpoint of e2 and intersecting e1 in a single point
(see also Fig. 9b). These circles can be calculated efficiently.

Note that we do not necessarily know in advance which
subcase we are dealing with, and hence may need to calculate
as many as 5 circles and select the smallest among them.

Case 3. |H | = 3, H = {e1,e2,e3}, and there exist two different
indices i , j such that N (ei ,r )∩N (e j ,r ) is a collinear pointset.
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Subcase 3a. |H | = 3, H = {e,e2,e3}, and there exist different
indices i , j such that N (ei ,r )∩N (e j ,r ) = s′ is nondegenerate
line segment. Then ei and e j are necessarily parallel segments.
We calculate s′ and r as in Subcase 2a. The center of our
candidate for cH will be the smallest point R on s′ which is at
distance at most r to ek (if there is any such point), where k is
the index from {1,2,3} different form i and j . Note that it may
occur that all the segments are parallel. Then we may have to
work with more than one pair ei ,e j , and take the smallest of
the resulting circles for cH .

Subcase 3b. |H | = 3, H = {e1,e2,e3}, and there exist different
indices i , j such that P = N (ei ,r )∩N (e j ,r ) is a single point P .
Then necessarily N (e1,r ) and N (e2.r ) touch each other and we
may proceed as in Subcase 2b. We have to test if the resulting
candidate for cH does indeed itersect the third segment.

Case 4. |H | = 3, H = {e1,e2,e3}, and for every pair of different
indices i , j the intersection N (ei ,r )∩N (e j ,r ) is not a collinear
set.

Here by Lemma 3 we know, that the intersection

N (e1,r )∩N (e2,r )∩N (e3,r )

is a single point P . Moreover P is on the boundary of every
N (ei ,r ) as otherwise we would be in Case 3. These imply
that for every i segment ei has exactly one point Pi ∈ ei at
distance r form P (similar to Fig. 4 but K is a single point).

First we dispense with the subcase when there exist an i 6= j
such that Pi ∈ e j . To account for these possibilities, for each
pair i 6= j we determine the smallest disk covering ei ∩ e j (if
it is not empty) and ek for k 6= i , j . This can be done as in
Case 2, and put the resulting disks onto the list of candidates
for cH .

From that point on we may assume, that the points Pi are
not included on e j whenever i is different form j . Also they
are not collinear.

Subcase 4a. Pi is an endpoint of ei for every i . Then put on
the list of candidates for cH the unique circle passing through
these 3 points. This circle is easily computed. We do that for
every possible selection of the endpoints Pi ∈ ei which give
three different points (there may be as many as 8 possibilities).

Subcase 4b. Two of the Pi are endpoints of the ei the third
of them (say Pk ) is an inner point of ek . Then the circle of
radius r with center P touches the line of ek . The candidate
for P with these data is uniquely determined as follows: we
compute (a quadratic equation of) the parabola which is the
locus of the points equidistant to Pi and ek (whose focus is
Pi and directrix is the line of ek ). By our assumptions, this is
a nondegenerate parabola. We intersect the parabola with the
perpendicular bisector of the segment Pi P j , where j 6= i ,k.
This gives at most two possible points for P . We take the
smallest of the resulting circles as a candiadte for cH . We do
this for every pair i , j , i 6= j . This gives at most 6 candidates
for cH (see also Fig. 10).

Subcase 4c. One of the Pi is an endpoint of ei , the other
two are inner points of, say e j and ek . In this case the lines

Fig. 10. Smallest covering disk of 2 points and 1 line

` j of e j and `k of ek can not be parallel, because then we
would be in Subcase 3a. Point P will be at the intersection
of the nondegenerate parabola with focus Pi and directrix ` j ,
and the angular bisectors of the intersecting lines ` j and `k .
This gives at most four possibilities for P . These points and
the corresponding candidates for cH are easily calculated. We
have to do this computation for every i ∈ {1,2,3}, giving at
most 12 candidates for cH (see also Fig. 11).

Fig. 11. Smallest covering disk of 1 point and 2 lines

Subcase 4d. The points Pi are all inner points of their
segments ei . Then, as in the previous subcase, we infer that
no two of the lines `i determined by ei can be parallel. In this
setting, as a noted special case of Apollonius’ problem (see
pages 346-355 in [33]) there are four circles touching `1,`2,`3

and they can be calculated easily by taking intersections of
angular bisectors for the line pairs `i ,` j . We note however
that only the inscribed circle for the triangle determined by
the by `1,`2,`3 can be a candidate for cH . the other three
disks can not be optimal7 (see also Fig. 12).

The subcases we have given cover all the possibilities. When
we process the input in the order of the subcases discussed
above, we do not necessarily know in advance whether the
subcase just considered is a valid one for that particular
instance. One just computes the candidates for cH described at
the subcase, if the input data permits it8. There is always just

7The shortest arc of the other circles contaning the tree points of intersection
with the `i is less than half of the complete circle, hence the points can be
covered by a smaller disk.

8For example if some of the lines `i are parallel, then we do not compute
circles at Subcase 4d, as we do not have a proper triangle to work with. Then
4d does not apply to the actual input.
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Fig. 12. Smallest covering disk of 3 lines

a constant number of circles to form. The minimal one can
be selected at the end from the list of candidates calculated in
the course of the computation.

C. Proof of Thm. 4

By Thm. 2 it suffices to show that the statement holds for a
subset H ⊂Hr and c = cH whenever |H | ≤ 3. We may proceed
along the Cases in the proof of Thm. 3.

Proof of Thm. 4: In Case 1 the center of c will be a point
from X . In Case 2 the circle c passes through a point from
V (an endpoint of an interval from H). In Subcase 3a then
center I of c will be on the segment s′. If I is an endpoint
of s′, then c passes through an endpoint of ei or e j . If I is
an interior point of s′, then I must lie on the boundary of the
third interval ek , hence c passes through exactly one point of
ek . Now if c intersects ek in one of its endpoints, then we
are done again. If not, then ek cannot be parallel to ei and
e j . We have that c touches all of the three intervals in three
different interior points. Moreover, exactly two of the intervals
are parallel. We defer the analysis of this situation until the
end, where the closely analogous 4d is considered.

In Subcase 3b c passes through an endpoint of ei or e j .

We now turn to Case 4. If the points Pi ∈ ei , (i = 1,2,3) are
not all different, then the resulting candidates for cH all pass
through either en endpoint of an ei or a point of an intersection
ei ∩e j

9, and we are done in these cases.
We can henceforth assume that the points P1,P2,P3 are all

different. Now Subcases 4a, 4b and 4c are done, as c must
pass through an endpoint of an ei . We turn our attention to
Subcase 4d. Then the lines ē1, ē2, ē3 of the respective intervals
e1,e2,e3 determine a nondegenerate triangle ABC, and c will
necessarily be the inscribed circle of this tringle (see Fig.
13), as the other circles touching the three lines all have
larger radii. We assume w.l.o.g. that the largest angle of the
triangle is �B AC . Then the radian measure of �B AC is in interval
[π3 ,π).This way sin(�I AC ) ≥ 1

2 since AI is the angle bisector of�B AC . Moreover,

|AI | = |LI |
sin �I AC

≤ r
1
2

= 2r.

9If ei and e j are from the same line, then only the endpoints of ei ∩e j are
to be considered in X .

If A ∈ V ∪ X , then we are done. Else there exists a node
T ∈V in [AK ]∪ [AL]. Clearly, d(T I ) ≤ 2r , and we are done.

Finally we consider the remaining case from 3a. This is
similar to the preceding one, but as two of the three lines are
parallel, ABC has a point at infinity. At one of the vertices,
say A, the triangle will have angle at least π/4, and we exhibit
a suitable point T ∈ X ∪V with d(T, I ) ≤ 2r as in the preceding
paragraph.

A

B
C

I

K L

Fig. 13. Illustration for the proof of Thm. 4
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