
Enumerating Shared Risk Link Groups of Circular Disk Failures
Hitting k Nodes
Balázs Vassa, Erika Bérczi-Kovácsb, and János Tapolcaia
aMTA-BME Future Internet Research Group, Budapest University of Technology, {vb,tapolcai}@tmit.bme.hu
bDepartment of Operations Research, Eötvös University, Budapest, Hungary, koverika@cs.elte.hu

Abstract

Current backbone networks are designed to protect a certain pre-defined list of failures, called Shared Risk Link Groups
(SRLG). It has been observed that some type of failure events manifested at multiple locations of the network which are
physically close to each other. Such failure events are called regional failures, and are often caused by a natural disaster.
The aim of the paper is to bring the conventional SRLG based pre-planned protection and regional failures closer to each
other by providing a systematic approach to generate the list of SRLGs for regional failures. In our study we overestimate
the regional failures with failures having a shape of circular disk; however, instead of fixing the radius we classify the
regional failures according to the network elements they hit. In particular we are interested in the number of nodes
the failure can hit. Formally, we focus on circular disk failures that hit exactly k nodes, where k is part of the input.
According to simulation results, this list is short with O((k+ 1)|V |) SRLGs in total, and can be computed in O(|V |3),
where V denotes the set of the nodes. Applying the obtained SRLG list network operators can design their networks to
be protected against regional and random failures.

1 Introduction

Current backbone networks are built to protect a certain list
of failures. Each of these failures (or termed failure states)
forms a Shared Risk Link Group (SRLG), which is a set
of links that is expected to fail simultaneously. The net-
work is designed to be able to automatically reconfigure in
case of a single SRLG failure, such that every connection
further operates after a very short interruption. In practice
it means the connections are reconfigured to by-pass the
failed set of nodes and links. Thus the network can recover
if an SRLG or a subset of links in an SRLG fails simultane-
ously; however, there is no performance guarantee when a
network is hit by a failure that involves links not a subset of
an SRLG. Nevertheless, the list of SRLGs must be defined
very carefully, because not getting prepared for one likely
simultaneous failure event means a significant degradation
in the observed reliability of the network.
Operators have numerous answers what simultaneous fail-
ures mean. One extreme is to list every single link or node
failure as an SRLG. Here the concept is that the failure
first hits a single network element for the protection of
which the network is already pre-configured. Often there
is a known risk of a simultaneous multiple failure that can
be added as an SRLG, for example if two links between
different pair of nodes traverse the same bridge, etc. On
the other hand, we have witnessed serious network outages
[1, 2, 3, 4, 5, 6, 7] because of a failure event that takes down
almost every equipment in a physical region as a result of
a disaster, such as weapons of mass destruction attacks,
earthquakes, hurricanes, tsunamis, tornadoes, etc. These
type of failures are called regional failures, which are si-

multaneous failures of nodes/links located in specific ge-
ographic areas .It is still a challenging open problem how
to prepare a network to protect such failure events, as their
location and size is not known at planning stage. In the
paper we propose a solution to this problem with a tech-
nique that can significantly reduce the number of possible
failure states that should be added as an SRLG to cover all
regional failures.
Regional failures can have any location, size and shape.
The shape of a regional failure can be arbitrary; however,
it is a common practice to overestimate the size of the re-
gional failure by ignoring its shape and rather focus on its
radius [10] [11]. Roughly speaking by overestimating the
size of the regional failure, we may require to have larger
distances between the working and backup resources than
it is needed in reality. However, adopting a failure model
that captures only the diameter of the failed region results
in a manageable list of SRGLs [11]. Nevertheless it is not
trivial to define a network wide parameter for the maxi-
mal radius the regional failure may have. Thus, to have a
generic model instead of fixing the radius we classify the
regional failures according to the network elements it hits.
In particular we are interested in the number of nodes the
failure covers. Note that the networks are more sensible to
node failures than link failures. The intuition behind this
model is that there are more network nodes in the crowded
areas, where we would like to generate more SRLGs.
In our previous studies [12] and [13] regional failures hit-
ting exactly k = 0 and k = 1 nodes have been studied. The
lists proposed for protecting these failures have a length
linear in the number of network nodes and can be calcu-
lated in O(|V | log |V |) and O(|V 2|) for k = 0 and k = 1,

respectively, in practice.
In this study the number of SRLGs is significantly reduced
applying computational geometric tools based on the fol-
lowing assumptions:

1. The network is a geometric graph G(V,E) embedded
in a 2D plane.

2. The shape of the regional failure is assumed to be a
circle with arbitrary radius and center position.

3. We focus on regional link k-node failures, failures
that hit k nodes.

We will show that with these assumptions the number of
SRLGs is small, O(k|V |) in a typical backbone network
topology, and at most O(|E||V |) in an artificial worst case
scenario (shown in [12]), where |V | denotes the number
of nodes in the network, and |E| the number of links. We
propose a systematic approach based on computational ge-
ometric tools that can generate the list of SRLGs in O(|V |3)
steps on typical networks.
Using the obtained SRLG list network operators can de-
sign their networks to be protected against regional and
random failures. Backbone networks designed according
to our new failure model should have higher reliability.
The paper is organized as follows. After Sec. 1 of intro-
duction, in Sec. 2 our model will be presented. In Sections
3 and 4 there will be introduced a naive and an improved
algorithm for computing the SRLG list, respectively. After
this, we further refine our insight on proposed algorithms
and auxiliary graphs in Sec. 5. Simulation results are pre-
sented in Sec. 6. Finally, conclusions are drawn in Sec
7.

2 Model and Assumptions

The network is modeled as an undirected connected ge-
ometric graph G(V,E) with n = |V | nodes and m = |E|
edges. E is given as an edge list, and n ≥ 3 is assumed.
The nodes of the graph are embedded as points in the Eu-
clidean plane, and the edges are embedded as line segments
between the end points. It will be assumed that basic arith-
metic functions (+,−,×,/,√) have constant computa-
tional complexity. For simplicity we assume nodes of V
are situated in general positions of the plane, i.e. there are
no three points on the same line, and no four on the same
circle.
In this study failures are caused by a regional disaster hav-
ing an area overestimated by a disk, i.e we overestimate the
disaster such that it erases all network elements that inter-
sect the interior of a circle c, and leaves all other network
elements untouched. Note that we do not assume the failed
region has a shape of disk, instead this modeling technique
overestimates the size of the failed region in order to have
tractable problem space.
Due to mathematical considerations the erasing effect of a
circle is formally defined as follows.

Definition 1. If an edge e (considered as a geometric ob-
ject) intersects the interior or the boundary of a circle c

then we say e is hit by c. A node u is hit by circle c if it is
located in interior of c (and not on its boundary.)

In this study we focus on disk failures hitting exactly k
nodes, where k ∈ {0, . . . ,n−2} is a given number.

Definition 2. Let C denote the set of all circles in the
plane, and let Ck ⊆ C denote the set of those hitting ex-
actly k nodes.

From the viewpoint of connectivity listing failed nodes be-
side listing failed edges has no additional information, thus
only the failed edge sets will be considered.

Definition 3. Let Ec denote the set of edges hit by a circle
c.

Based on the above we can define the set of failure states.

Definition 4. Let set F(C) denote the set of link sets which
can be hit by a circle c ∈ C .

If a network is prepared for the failure of a given edge set
F , then it is prepared for the failure of every edge set F ′ ⊆
F too, thus it is enough to list only the maximal elements
of F(C) as SRLGs.

Definition 5. For a set C ′ of circles let M(C ′) denote the
set of maximal link sets which can be hit by a circle c∈C ′.

The aim of this study is to offer fast algorithms computing
M(Ck) for various values of k, which is also denoted by
Mk = M(Ck).

3 Naive Algorithm for Enumerating
Maximal Failures

In this section a naive polynomial algorithm is presented
for computing Mk. The basic idea is that determining Mk
can be decomposed into several simpler tasks.

3.1 Basic Observations
Our key observation is the following.

Claim 6. For every f ∈Mk (k≤ n−2) there exists a circle
c ∈ Ck such that f is hit by c and c has at least 2 nodes on
its boundary.

Proof. Since f ∈ Mk, there exists a c0 ∈ Ck that hits f .
If c0 has at least 2 nodes on its boundary, it fulfills the
requirements of the claim. On the other hand, if c0 does not
have any node on its boundary, it can be magnified until it
reaches a node u while keeping its centre point. Remains
to prove that if c0 has exactly 1 node on its boundary then
there exists a ’good’ circle having 2 nodes on its boundary.
Let us denote the node on the boundary of c0 with u, and
the centre point of c0 with P. In most cases, c0 can be
magnified until it reaches a node v while keeping u on its
boundary and its centre point on line uP. The resulting cir-
cle c still hits f , is element of Ck, and has at least 2 nodes
on its boundary. If the described v does not exist, then
all the edges from f have at least one of theire endpoints

q

po

n

m
l

k

j

i

h

g

f

e

d

c

b
a

(a) Input graph, n = 17

q

po

n

m
l

k

j

i

h

g

f

e

d

c

b
a

(b) Graph D0(V,E0), |E0|= 40

q

po

n

m
l

k

j

i

h

g

f

e

d

c

b
a

(c) Graph D1(V,E1), |E1|= 66

q

po

n

m
l

k

j

i

h

g

f

e

d

c

b
a

(d) Graph D2(V,E2), |E2|= 89

Figure 1 Input topology and auxiliary graphs Dk for k = 0,1,2.

inside c0; and c0 can be magnified while keeping P as cen-
tre point until it reaches a node u2. Let this circle be c1,
which can be shrunken until its boundary reaches a node
v2 while keeping its centre point on line u2P and node u2
on its boundary. If the resulting circle c2 has a third node v3
on its boundary, then c2 can be magnified a bit while keep-
ing u2 and v2 on its boundary such that v3 becomes a node
in interior of the resulting c3, which still hits f , is element
of Ck, and has at least 2 nodes on its boundary, completing
the proof.

Claim 6 suggests the following simple method to compute
Mk. First, for every node pair {u,v} we compute a set Mu,v

k
of failures which contain all the elements of Mk that can be
hit by a circle c ∈ Ck having u and v on its boundary. Mk
can be computed by merging these sets. Let us formalise
the above method.

Definition 7. For every node pair u and v let C u,v
k be the

set of disks from Ck having u and v on their boundary.

Based on the above definition we can define an auxiliary
graph as follows.

Definition 8. Let Dk(V,Ek) denote the graph with node set
V and edge set Ek, where {u,v}∈Ek if and only if C u,v

k 6= /0.

Fig. 1 shows an example of the input topology and the
auxiliary graphs Dk for k = 0,1,2. It can be shown that D0
is actually the Delaunay triangulation [14] of the graph;
thus, we call Dk the Delaunay-k graph. Clearly, Dk can be
computed in polynomial time. In Sec. 6 we will show that
Dk is sparse for small k. In other words, C u,v

k = /0 for most
node pairs u,v for small k.
We aim to compute Mu,v

k = M(C u,v
k). Fortunately, accord-

ing to Claim 6 we have

Mk ⊆
⋃

u,v∈Ek

Mu,v
k . (1)

3.2 The Apple Data Structure
Assume for a moment that for a given node pair {u,v}
there are at least k nodes in both half planes determined
by line uv. Let us place a Cartesian coordinate system in
the plane such that line uv be identical to the Oy axis. As-
suming that C u,v

k is not empty, this means that C u,v
k has

a rightmost c+ and a leftmost c− element (i.e. the centre

c− c+

u

v

w− w+

E− E+

e1 e2 e3
e4

Figure 2 Illustration of an apple with k = 0. Apple Au,v
k

consists of circles c+ and c−, nodes w+ and w− from V ∪
{v /0}, and ordered lists of edges E+ and E−, where E+ =
{e4,e3} and E− = {e2,e1}.

point of c+ and c− have the biggest and smallest x coordi-
nates among circles from C u,v

k , respectively), see also Fig.
2. It is easy to prove indirectly that circle c+ has 3 nodes
on its boundary, say u,v and w+. Similarly, c− has u,v and
w− on its boundary.
If there are no k nodes on the left side of uv, then let c+ be
the right open half plane h+ determined by line uv. In this
case h+ is considered to be a degenerate element of C u,v

k .
Same applies for the left side of uv. Let v /0 be considered
as an imaginary node. For easier discussion we will use v /0
to indicate that our node object does not exist. For example
in the above case we have w+ = v /0.
Let Ec+ and Ec− denote the edge sets hit by c+ and c−,
respectively. To compute Mu,v

k we use the following obser-
vation.

Claim 9. For all f ∈ F(C u,v
k), f ⊆ Ec+ ∪Ec− .

Proof. It is easy to see that for every circle c ∈ C u,v
k , c ⊆

c+∪ c−.

According to Claim 9, a first step towards computing Mu,v
k

is to determine the edge sets hit by c+ and c−. Trivially,
this can be done in polynomial time. The remaining ques-
tion is how to calculate systematically Mu,v

k from Ec+∪Ec− .
Some additional notations and definitions precede the pre-
sentation of the solution.
For each edge e ∈ Ec+ ∪Ec− we will compute the maximal
subtending angle of the line segment u,v. Here we consider
the two half planes determined by line u,v separately. Let
J denote the right side of circle c+ cut by the vertical line
uv, and I the left side of circle c− cut by the vertical line

uv. Let E+ denote the list of edges hit by J, and similarly,
let E− be the list of edges hit by I. Thus, we have E+ ⊆
Ec+ and E− ⊆ Ec− , and also E+∪E− ≡ Ec+ ∪Ec− .
Let �u,v

+ (e) denote the maximal subtending angle to line
segment [uv] from a point of edge e in J. Similarly, let
�u,v
− (e) denote the maximal subtending angle to line seg-

ment [uv] from a point of edge e in I. Let edges in E+ be
ordered ascending by their�u,v

+ values, and let edges in E−
be ordered descending by their �u,v

− values.
Note that according to Claim 43 from the Appendix, both
�u,v

+ (e) and �u,v
− (e) can be computed in O(1).

Now we can define the data structure apple for each edge
of the Delaunay-k graph.

Definition 10. For an edge {u,v} ∈ Ek, apple Au,v
k is an

ordered system Au,v
k = (c+,c−,w+,w−,E+,E−), where cir-

cles c+ and c−, nodes w+ and w−, and ordered lists of
edges E+ and E− are as described in the subsection be-
fore.

3.3 Concept of Sweep Circle Algorithms
3.3.1 Concept
In this subsection we highlight the paradigm of sweep cir-
cle algorithms, which is similar to algorithmic paradigm
of sweep line (sweep surface) algorithms in computational
geometry.
In case of sweep line algorithms it is imagined that a line
is moved across the plane, keeping its orientation and stop-
ping at some points. Geometric operations are restricted to
the immediate vicinity of the sweep line whenever it stops,
and the complete solution is available once the line has
passed over all objects. For example Fortune’s sweep line
algorithm for computing the Voronoi diagram of a point set
is a sweep line algorithm [14].

Definition 11. Let C u,v be the set of circles having u and
v on the boundary.

Our sweep circle algorithms will scan through circle sets
C u,v. In this sense in contrast of the sweep surface
paradigm, our circles have different diameters, and instead
of keeping "orientation" the invariant will be that all circles
have u and v on the boundary. Thus our circle to sweep is
"elastic", in the sense that it can change its diameter, but
not its shape.

3.3.2 Example
Our first sweep circle algorithm is used for determining w+

and w− for a given Au,v
k . The algorithm works as follows.

Starting from a circle c∈C u,v having centre point ’very far
away’ on the right side of line uv, c is swept throughout the
elements of C u,v until a position ’very far away’ on the left.
Meanwhile the number of nodes hit is followed. Nodes
w+ and w− can be determined at the first and last moment
when c hits exactly k nodes, respectively. (Non-existence
of such moments would mean that {u,v} /∈ Ek.)
Technically this can be done as follows. Let V+ ⊆ V be
the list of nodes right from line uv ordered increasingly
by their subtending angles �(uwv). Similarly, let V− be
the list of nodes left from line uv ordered decreasingly by

their subtaining angles. Applying the fact that a node pair
z+ ∈V+ and z− ∈V− can be hit by the same circle c ∈ C u,v

iff �(uz+v)+�(uz−v) ≥ π , sweeping can be imitated as
in Algorithm 1.

Algorithm 1: Sweeping through C u,v checking the nodes
Input: V and u,v ∈V begin

1 Compute V+ and V−;
2 i, j← 1;
3 while not reached the end of V+ or V− do
4 increase j until V+[i] and V−[j] cannot be hit by the

same c ∈ C u,v;
5 increase i until V+[i] and V−[j] can be hit by the same

c ∈ C u,v;

From the following Proposition 12, one can check that the
number of hit nodes can be easily followed with the help
of an additional variable.

Proposition 12. Let c ∈ C u,v. If V+[i− 1] is not hit by c,
then all the preceding elements in V+ are not hit by c. If
V+[i] is hit by c, then all the following elements are hit by
c.
Similarly, if V−[i− 1] is hit by c, then all the preceding
elements are hit by c. If V−[i] is not hit by c, then all the
following elements are not hit by c. �

Claim 13. For a given {u,v} ∈ Ek, w+ and w− can be
determined in O(n logn) time.

Proof. According to those written in this subsection, both
V+ and V− can be determined in O(n logn) the dominant
step being a sorting algorithm. Sweeping can be trivially
done in O(n), meanwhile both w+ and w− can be deter-
mined.

3.4 Determining Apples
Claim 14. An apple can be determined in O(m logm).

Proof. Checking if {u,v}∈Ek can be done with the help of
Algorithm 1 in O(n logn) time. If {u,v} ∈ Ek, then w+ and
w− can be determined in O(n logn) according to Claim 13.
From w+ and w− we also know c+ and c−, so it remains
to determine E+ and E−. With this aim O(m) edges have
to be checked and sorted which gives a total complexity of
O(m logm).

Definition 15. Let Ak be the set of apples Au,v
k .

Corollary 16. For a given k, the set of apples Ak can be
determined in O(n2m logm).

Proof. O(n2) node pairs have to be examined. According
to Claim 13, a node pair can be examined in O(m logm),
which completes the proof.

3.5 Computing the Set of SRLGs by Sweep-
ing Through Each Apple

In order to compute Mu,v
k , the algorithm has to be able to

decide if there exists a circle c ∈ C u,v
k which hits a given

edge pair e and f from E+ ∪E−. If both e and f are part
of E+ or E−, then they can be both hit by c+ or c−. If it
is not the case, the following proposition will help in this
decision.

Proposition 17. Let e ∈ E+, and f ∈ E−, they can be hit
by the same c ∈ C u,v

k iff �u,v
+ (e)+�u,v

− (f)≥ π . �

Determining Mu,v
k from apple Au,v

k can be done with the
help of a sweep circle algorithm as a subroutine of Algo-
rithm 2 similar to Algorithm 1, the only difference is that
here we check the edges instead of nodes.
Implementation of Algorithm 2 has to be made carefully.
On one hand, while sweeping through C u,v from c+ un-
til c−, not necessarily all the circles are from C u,v

k . On
the other hand, edges intersecting segment [u,v] should be
stored exactly once in any element of Mu,v

k .

Algorithm 2: Processing an apple
Input: Apple Au,v

k
Output: Set Mu,v

k of locally maximal failures.
begin

1 while Sweeping through C u,v from c+, until c−; checking
the edges do

2 Gather in (Mu,v
k)′ the failures hit by a c ∈ C u,v

k with
locally maximal cardinalities

3 Mu,v
k ← maximal elements of (Mu,v

k)′;
4 return Mu,v

k

Claim 18. Algorithm 2 calculates Mu,v
k in O(m3).

Proof. Correctness of the algorithm can be easily checked.
Since while sweeping an edge can get hit or unhit at most
once on one side of line uv, there are at most O(m) fail-
ures with locally maximal cardinalities, each of them hav-
ing O(m) edges, thus (Mu,v

k)′ has O(m) elements of O(m)
size. Trivially, every pair of sets from (Mu,v

k)′ can com-
pared in O(m). This means that from (Mu,v

k)′, Mu,v
k can be

determined in O(m3). It can be checked that all the other
operations have complexity at most O(m3).

Corollary 19. All Mu,v
k can be determined in O(n2m3). �

3.6 The Naive Algorithm
As presented before, a naive algorithm should determine
and process the apples, and finally merge the obtained lists
Mu,v

k in Mk. This way the naive algorithm could be written
as follows:

Algorithm 3: Algorithm for computing Mk

Input: G(V,E), k
Output: Mk
begin

1 Determine Ek;
2 Determine set Ak of nonempty apples;
3 Process apples from Ak;
4 Merge lists Mu,v

k ;
5 return Mk

Theorem 20 gives a loose time complexity for the algo-
rithm:

Theorem 20. Algorithm 3 calculates set Mk in O(n4m3)
time. Mk has O(n2m) elements, and a total length of
O(n2m2).

Proof. Let the four phases of the algorithm be examined
separately.
Determining Ek: As mentioned in the proof of Claim 14,
the sweep circle Algorithm 1 can be used to decide whether
a given pair of nodes {u,v} ∈Ek. According to Claim 13, it
gives the answer in O(n logn). Since there are O(n2) node
pairs, the total complexity of this phase if O(n3 logn).
Determining Ak: According to Corollary 16, Ak can be de-
termined in O(n2m logm).
Processing apples: In Cor. 19 it was shown that all of the
apples can be processed in O(n2m3).
Merging lists: Mk can be obtained by deleting the non-
maximal and redundant elements while comparing all the
possible list pairs {Mu1,v1

k ,Mu2,v2
k }, then concatenating the

remaining sets. There are O(n2) apples, and therefore
O(n2) Mu,v

k lists with at most m elements containing at most
m edges (thus Mk has O(n2m) elements, and a total length
of O(n2m2)). This means O(n4m2) comparisons and dele-
tions. Since both comparision and deletion can be done in
O(m), the total complexity of this phase is O(n4m3).
We conclude that Algorithm 3 computes Mk in O(n4m3).

In the following sections we will improve this algorithm.
Note that in Table 1 the obtained time complexities are
summarized.

4 Improved Algorithm for Enumer-
ating Maximal Failures

In this section Algorithm 3 will be improved while keeping
its four phases. These phases either will be improved, or
their complexity will be better estimated.

4.1 Determining Ek Faster
Claim 21. Decision whether a node pair {u,v} ∈ Ek can
be made in O(n+ k logk).

Proof. For a given node pair u,v ∈ V , let V+ and V− be
as in Subsubsec. 3.3.2. A useful observation is that based
on Prop. 12, there is no need to determine the whole lists
V+ and V−, we only need to store and sort the k elements
of both of these lists with the biggest subtending angles
�(u.v) in V+,k and V−,k (if there is no k elements right from
uv, then let V+,k be V+, same for left side). Sweep circle
algorithm described in Subsubsec. 3.3.2 run with V+,k and
V−,k can be used for deciding if {u,v} ∈ Ek, having a com-
plexity of O(k).
It remains to prove that V+,k and V−,k can be determined in
O(n+k logk). Node v+,k with the k. biggest viewing angle
from V+ can be determined in O(n) from V , same for v−,k,
V−. After this, set containing nodes from V+ with the k
biggest viewing angle can be calculated in O(n) too, same

for V−. V+,k and V−,k can be obtained by sorting the two
determined sets in O(k logk).

Lemma 22. Ek can be determined in O(n2(n+ k logk)).

Proof. The proof is straightforward from Claim 21 and the
fact that there are O(n2) node pairs to examine.

4.2 Better Complexity Bounds for Deter-
mining Apples

Up to this point the fact that G(V,E) is a graph of a com-
munication network, and thus it is ’almost planar’ was not
used. Intuitively, an almost planar graph has O(n) edges.
In the followings this will be formalised with the help of a
graph density parameter.

Definition 23. For all i∈ {0,n−2}, let θi be the maximum
number of edges hit by a circle from Ci.

Since parameters θi measure local properties of the net-
works, often it will be assumed that these parameters are
not exceeding a constant. For example θ0 is not going to
be large, since where there are many links, it is likely to
appear a node too.

Observation 24. For any 0≤ i < j ≤ n−2, θi ≤ θ j.

Claim 25. In any apple a∈ Ak there are at most 2θk edges.

Proof. All edges in a are hit by either c+ or c−, which
together hit at most 2θk edges.

Lemma 26. The number of edges is O(nθ0), more pre-
cisely m≤ (2n−5)θ0.

Proof. Consider set E0, i.e. the set of node pairs {u,v} for
which C u,v

0 is not empty, in other words there exists a circle
not hitting any node and having u and v on its boundary. It
can be observed that no two edges from E0 are intersecting
each other in inner points, and that the edges of E0 generate
a triangulation D0(V,E0) of V . In fact, this particular tri-
angulation is the so-called Delaunay triangulation [14] of
node set V . A triangle in D0 is called a Delunay triangle.
The Delaunay triangulation D0 is a planar graph, thus
|E0| ≤ 3n− 6. Since every Delunay triangle has 3 Delau-
nay edges and a Delaunay edge is the edge of at most 2
Delaunay triangles, and there are at least 3 Delaunay edges
on the convex hull of V , the number of Delaunay triangles
is at most

2|E0|−3
3

≤ 2
3
(3n−6)−1 = 2n−5.

Since every edge intersects at least one triangle, and every
triangle can be covered by a circle c ∈ C0, which intersects
at most θ0 edges of the network, we get that the number m
of edges cannot be larger than θ0 times the number of the
Delaunay triangles. We get m≤ (2n−5)θ0.

Lemma 27. Set Ak of apples can be calculated in
O(|Ek|(nθ0 +θk logθk).

Proof. There are |Ek| apples to determine. For each, O(m),
or alternatively in O(nθ0) edges have to be checked if they
are in the apple. After this, based on Claim 25, there are
O(θk) edges to order, which gives the proposed complex-
ity.

Corollary 28. If θ0 is upper bounded by a constant, then
Ak can be determined in O(|Ek|n). �

4.3 Storing Mu,v
k more Economically and

Better Bound for Processing Apples
One can observe that in case of an apple Au,v

k , a list of edges
can be constructed such that every f ∈ Mu,v

k forms an in-
terval in this list, and this way Mu,v

k can be stored more
economically.

Definition 29. For an apple Au,v
k let Lk be the concatena-

tion of list E+ and list E− minus those edges from E− which
intersect segment [uv].

Claim 30. For a nonempty apple Au,v
k , Mu,v

k can be stored
in O(θk) space.

Proof. It can be observed that every f ∈Mu,v
k forms a list

in Lk, this way after storing Lk, for identifying f it is only
needed to store the index of ’beginning’ and ’end’of f .
Since Mu,v

k has at most |Lk| elements, for storing Mu,v
k we

only have to store at most |Lk| index pairs beside storing
|Lk|, which means O(|Lk|) space.
Since all the edges in Lk can be hit with at least one of c+
and c−, and every edge e appears at most 2 times in the
list (it can appear twice only if it is hit by both c+ and c−),
|Lk| is at most 2θk. This means that Mu,v

k can be stored in
O(θk).

Cor. 19 gave a complexity bound on processing apples.
Now it can be rephrased applying the new notions.

Lemma 31. All the apples from Ak can be processed in
O(|Ek|θ 2

k).

Proof. There are |Ek| apples to process. Each of them can
be processed in θ 2

k time by constructing Mu,v
k
′ while scan-

ning through C u,v
k , then eliminating its nonmaximal and

redundant elements. Note that if the elements of Mu,v
k
′

are stored by noting the indexes of their first and last
edges, each pair of elements from Mu,v

k
′ can be compared

in O(1).

4.4 Better Complexity Bound on Merging
Lists Mu,v

k

Lemma 32. Mk can be computed in O(|Ek|2θ 3
k) from lists

Mu,v
k .

Proof. There are |Ek| lists containing O(θk) sets contain-
ing O(θk) edges. Mk can be computed by comparing all
the set pairs (and eliminating the redundant or nonmaximal
elements), which means O(|Ek|2θ 2

k) comparisions. Since
comparing two sets takes O(θk) time, the total complexity
is O(|Ek|2θ 3

k).

4.5 Complexity of an Improved Algorithm
for Computing Mk

Theorem 33 gives complexity bound on an improved algo-
rithm for computing Mk.

Theorem 33. Mk can be computed in O(n2(n+ k logk)+
|Ek|nθ0 + |Ek|2θ 3

k). Mk has O(|Ek|θk) elements with at
most θk edges, and can be stored in O(|Ek|θk) space.

Proof. As presented perviously in this section (in Lemmas
22, 27, 31 and 32), each of the four phases of Alg. 3 can
be examinated in the proposed complexity. There are |Ek|
lists Mu,v

k to merge, each of them has at most θk edges, and
according to Claim 30, each Mu,v

k can be stored in O(θk),
completing the proof.

Corollary 34. If θk is upper bounded by a constant, then
Mk can be computed in O(n2(n+ k logk)+ |Ek|n+ |Ek|2).
Mk has O(|Ek|) elements, and can be stored in O(|Ek|)
space.

Naive Improved

Determining Ek O(n3 logn) O(n2(n+ k logk))
Determining apples O(n2m logm) O(|Ek|(nθ0 +θk logθk))

Processing apples O(n2m3) O(|Ek|θ 2
k)

Merging lists O(n4m3) O(|Ek|2θ 3
k)

Total complexity O(n4m3) O(. . .)

T. c. if θi = O(1) O(n2(n+ k logk)+ |Ek|2)

Table 1 Time complexities of naive and improved algo-
rithms for computing Mk

As it was seen, |E0| < 3n, this way M0 can be computed
in O(n3). It can be proven (like in [13]) that |E1| < 6n,
this way M1 also can be computed in O(n3). Furthermore,
according to simulation results, |Ek|< 3(k+1)n (Obs. 40).
Based on these it worths to formulate the next corollary.

Corollary 35. If θk is upper bounded by a constant, |Ek|
is O(n1.5) and k is O(n

logn) then Mk can be computed in
O(n3).

There are possibilities to write even faster algorithms for
smaller values of k. In [12] and [13] we presented algo-
rithms which compute M0 and M1 in O(n logn) and O(n2),
respectively, if some conditions hold in a very similar
mathematical model. Proposing similar algorithms would
exceed the limits of this paper.

5 On Graph Delaunay-k and
Calculating M0,M1, . . . ,Mk Simultane-
ously

As mentioned before, graph D0(V,E0) is the Delaunay tri-
angulation of node set V , therefore it is a plane graph.

Claim 36. For every k ∈ {1, . . . ,dn/2e−1}, Ek−1 ⊆ Ek.

Proof. Let {u,v} ∈ Ei for an i < k. While sweeping
through C u,v with a circle c, nodes are getting hit and un-
covered, but maximum one at a time, this way the number
of hit nodes #c changes one-by-one while sweeping.
Since {u,v} ∈ Ei, #c can drop to i. On the other hand,
since either h+ or h− hits at least dn/2e−1 nodes, thus #c
reaches dn/2e−1. Since i < k≤ dn/2e−1, this means that
there exists a moment when #c = k, thus {u,v} ∈ Ek.

Claim 37. Graph Ddn/2e−1 is the complete graph on V .

Proof. Let {u,v} ⊆ V . Let the number of nodes hit by h+
and h− be #h+ and #h− , respectively. Clearly, #h+ +#h− =
n− 2, and a node from V \ {u,v} is hit by h+ iff it is
not hit by h−, this way it can be assumed w.l.o.g. that
#h+ ≥ dn/2e − 1 and #h− ≤ dn/2e − 1. This way while
sweeping from h+ to h− in C u,v, there exists a moment,
when the number of hit nodes equals dn/2e − 1, thus
{u,v} ∈ Edn/2e−1

Definition 38. Let M0,k be the concatenation of
M0,M1, . . . ,Mk.

As it turns out, calculating M0,k is not harder than calculat-
ing Mk:

Theorem 39. If k ≤ dn/2e − 1, then M0,k can be com-
puted in O(n2(n+ k logk)+ |Ek|nθ0 + |Ek|2θ 3

k). M0,k has
O(|Ek|θk) elements with at most θk edges, and can be
stored in O(|Ek|θk) space.

Proof. To calculate M0,k, we only need a small modifi-
cation of the improved algorithm from Section 4. First,
Ek, then Ak should be determined as in phases 1 and 2 in
the original algorithm. Processing an apple Au,v

k should
be modified: while a single sweeping we construct all of
Mu,v

0 ,Mu,v
1 , . . . ,Mu,v

k ; it can be proved that this is still pos-
sible in the same complexity as proven for phase 3 in the
original improved algorithm (Lemma 31). Construction of
lists M0, . . . ,Mk by merging, then concatenation can be also
done in the same complexity proven for original phase 4 in
Lemma 32.

6 Simulation Results

In this section we focus on the number of edges of graph
Delaunay-k. As seen in Fig. 1, graph D0 is a planar graph,
this way |E0| ≤ 3n−6. As proven in [13], |E1| ≤ 6n−15.
We deduct that |Ek|< 3(k+1)n for k = 0 and k = 1. How-
ever we coud not prove it mathematically yet, simulation
results show that that |Ek| < 3(k + 1)n holds for greater
values of k too, as shows Fig. 3. Note that if a graph has
an average nodal degree d, than it has m = nd/2 edges.
While increasing k, the linear growth of |Ek| slightly slows
as in Fig. 4, and finally, at k = dn/2e−1, Ddn/2e−1 becomes
the complete graph on V , as proven in Claim 37. If k is
increased further from dn/2e − 1, another process starts:
edges are dropping out of Dk causing a linear decrease in
|Ek|.
Let us formalise some of these observations and their
corollaries.

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5 6 7 8 9 10

A
vg

.n
od

al
de

gr
ee

in
D

k

k

BtNorthAmerica n = 36
BellCanada n = 39

Germany n = 50
Deltacom n = 103

Figure 3 Average nodal degrees in Dk
for small k values

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
ro

fe
dg

es
in

D
k

k

Deltacom n = 103

Figure 4 |Ek| for all possible k values

u

v

W+

q

a

b

p

F+

A

Figure 5 Illustration for Subsec.
8.1

Observation 40. According to simulation results, |Ek| is
O((k+1)n), more precisely |Ek|< 3(k+1)n. �

Using Obs. 40, the complexity results could be rephrased.
Instead of this we show most of these results in a tabular
form in Table 2.

Improved Improved + ”|Ek|< 3(k+1)n”

Determining Ek O(n2(n+ k logk)) O(n2(n+ k logk))
Determining apples O(|Ek|(nθ0 +θk logθk)) O(n(k+1)(nθ0 +θk logθk))

Processing apples O(|Ek|θ 2
k) O(n(k+1)θ 2

k)

Merging lists O(|Ek|2θ 3
k) O(n2(k+1)2θ 3

k)

Total complexity O(. . .) O(n2(n+(k+1)2θ 3
k))

Table 2 Time complexity of the improved algorithm for
computing Mk with and without using |Ek|< 3(k+1)n

Using simulation resulsts Theorem 39 can be written as
follows:

Claim 41. If k ≤ dn/2e−1, then M0,k can be computed in
O(n2(n+(k+ 1)2θ 3

k)). M0,k has O(n(k+ 1)θk) elements
with at most θk edges, and can be stored in O(n(k+1)θk)
space. �

Corollary 42. If k ≤ dn/2e− 1 and θk is upper bounded
by a constant, then M0,k can be computed in O(n2(n+(k+
1)2)). M0,k has O(n(k+1)) elements with O(1) edges, and
can be stored in O(n(k+1)) space. �

7 Conclusions

In this paper we propose a fast and systematic approach to
enumerate the list of possible circular disk failures having
at most k nodes inside. Defining the size of the region as
the number nodes inside is a very general failure model,
which does not require the knowledge of absolute coordi-
nates and the physical distances in the network topology.
Note that, we do not assume the failed region has a disk
shape, instead this modelling technique overestimates the
size of the failed region in order to have tractable problem
space. Roughly speaking, by setting a too large maximum
radius, we require to have larger distances between the
working and backup resources, than it is actually needed
in reality. However, adopting a failure model that captures

the number of nodes of the failed region results in model
manageable list of SRGLs. This opens up a straightforward
way of protecting regional failures by simply configuring
them as a list of SRLGs for the current self-healing mech-
anisms.

Acknowledgement

This article is based upon work from COST Action
CA15127 (”Resilient communication services protecting
end-user applications from disaster-based failures - RE-
CODIS”) supported by COST (European Cooperation in
Science and Technology). J.T. is partially supported by
the Hungarian Scientific Research Fund (grant No. OTKA
108947) E.B.-K. is partially supported by OTKA grant
K109240.

8 Literature

[1] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano,
“Assessing the vulnerability of the fiber infrastructure to
disasters,” IEEE/ACM Transactions on Networking, 2011.

[2] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic op-
tical networking: A new dawn for the optical layer?” IEEE
Communications Magazine, vol. 50, no. 2, 2012.

[3] J. Heidemann, L. Quan, and Y. Pradkin, A preliminary
analysis of network outages during hurricane sandy. Uni-
versity of Southern California, 2012.

[4] I. B. B. Harter, D. Schupke, M. Hoffmann, G. Carle et al.,
“Network virtualization for disaster resilience of cloud ser-
vices,” IEEE Communications Magazine, 2014.

[5] X. Long, D. Tipper, and T. Gomes, “Measuring the sur-
vivability of networks to geographic correlated failures,”
Optical Switching and Networking, 2014.

[6] B. Mukherjee, M. Habib, and F. Dikbiyik, “Network
adaptability from disaster disruptions and cascading fail-
ures,” IEEE Communications Magazine, 2014.

[7] R. Souza Couto, S. Secci, M. Mitre Campista, K. Costa,
and L. Maciel, “Network design requirements for disaster
resilience in iaas clouds,” IEEE Com. Magazine, 2014.

[8] D. M. Masi, E. E. Smith, and M. J. Fischer, “Under-
standing and mitigating catastrophic disruption and at-
tack,” Sigma Journal, pp. 16–22, 2010.

[9] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar,
J. P. Rohrer, M. Schöller, and P. Smith, “Resilience and

survivability in communication networks: Strategies, prin-
ciples, and survey of disciplines,” Comp. Networks, 2010.

[10] S. Neumayer, A. Efrat, and E. Modiano, “Geographic
max-flow and min-cut under a circular disk failure model,”
Computer Networks, vol. 77, pp. 117–127, 2015.

[11] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi, “List of
shared risk link groups representing regional failures with
limited size,” in Proc. IEEE INFOCOM, 2017.

[12] B. Vass, E. Bérczi-Kovács, and J. Tapolcai, “Shared risk
link group enumeration of node excluding disaster fail-
ures,” in NaNA, 2016.

[13] B. Vass, E. Bérczi-Kovács, and J. Tapolcai, “Enumerating
circular disk failures covering a single node,” in RNDM,
2016.

[14] F. Aurenhammer, “Voronoi diagrams: a survey of a fun-
damental geometric data structure,” ACM Computing Sur-
veys (CSUR), vol. 23, no. 3, pp. 345–405, 1991.

Appendix

8.1 Determining �u,v
+ (e) and �u,v

− (e) in
Constant Time

Claim 43. For any edge e = {a,b} and node pair {u,v} ⊂ V ,
both �u,v

+ (e) and �u,v
− (e) can be calucated in O(1).

Proof. Let us concentrate on calculation of �u,v
+ (e), because

�u,v
− (e) can be determined similarly.

Maximal subtended angle from line: First let us compute the
maximal subtended angle by segment [uv] from a point of line
ab right from uv. Let {A}= uv∩ab. Clearly, the subtending an-
gle function su,v(W) :=�(uWv) is unimodal in both rays (R+ and
R−) defined by line ab and point A (i.e. it has a strictly monotone
increasing and a strictly monotone decreasing interval). Let the
two points where local maximum is reached be W+ on the right
side and W− on the left side of uv. Let the cetre point of circles
c(uvW+) and c(uvW−) be F+ and F−, respectively. W+ can be
determined via determining F+.
Since point F+ is located equidistant from u and v, it is located
on perpendicular bisector q of segment [uv]. On the other hand,
F+ is located equidistant from v and line ab, thus it is on parabola
p defined by point v and line ab.
Since q can be described with a linear equasion and p with a
quadratic one, determining their intersections can be made via
solving a quadratic expression, which can be done in O(1).
From this point it is easy to describe circles c(uvW+) and
c(uvW−) , and to determine and distinguish F+ and F− via solving
quadratic expressions in constant time.
Maximal subtended angle from segment: Clearly, if W+ ∈ [AB],
then �u,v

+ (e) =�(uW+v), since su,v is unimodal in ray R+. If it is
not the case then �u,v

+ (e) = max(�(uAv),�(uBv)), again due to
unimodality. This way �u,v

+ (e) can be determined in O(1).

