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Abstract—In order to evaluate the expected availability of a
service, a network administrator should consider all possible
failure scenarios under the specific service availability model
stipulated in the corresponding service-level agreement. Given
the increase in natural disasters and malicious attacks with
geographically extensive impact, considering only independent
single link failures is often insufficient. In this paper, we build
a stochastic model of geographically correlated link failures
caused by disasters, in order to estimate the hazards a network
may be prone to, and to understand the complex correlation
between possible link failures. With such a model, one can quickly
extract information, such as the probability of an arbitrary set
of links to fail simultaneously, the probability of two nodes to be
disconnected, the probability of a path to survive a failure, etc.
Furthermore, we introduce a pre-computation process, which en-
ables us to succinctly represent the joint probability distribution
of link failures. In particular, we generate, in polynomial time,
a quasilinear-sized data structure, with which the joint failure
probability of any set of links can be computed efficiently.

I. INTRODUCTION

Being able to guarantee high availability of network services
is a crucial part of network management. The required level of
service availability is usually explicitly defined in a contract
between the service provider and the client, called service-
level agreement (SLA). A violation of the agreed-upon service
availability may lead to a financial penalty for the network
operator, hence, network operators must carefully (under-
)estimate the availability of their services and, if necessary,
reserve protection resources and implement recovery schemes
to meet the availability demands. A typical availability value
is “five nines” (99.999%), which translates to an average of
at most 5.26 minutes downtime per year. However, a recent
taxonomy of Internet failures [1] has revealed that big network
outages last much longer, and are often caused by disasters
that are beyond the protection schemes deployed, or due to
not properly taking into account the co-dependency and hence
correlation in tightly-coupled systems. Unfortunately, tradi-
tional availability estimation approaches, (wrongly) assume
link-failure events to be independent.

The problem of correlated links failures has become more
severe in the last decades, due to the increased use of virtual
environments, whose physical structure is typically hidden
from the user. Nevertheless, networks are built on physical

infrastructure and comprise elements such as switches, routers,
and optical links, which are prone to physical failures. While
some of these failures are isolated, in many cases several nodes
and links located in a geographic area fail simultaneously.
Geographic failures could for instance be caused by natural
disasters, such as earthquakes, hurricanes, or tsunamis [2], [3].
A recent example is the outage due to Cyclone Vardah in India
on December 12th, 2016, when Autonomous System AS15169
(operated by Google) and dependent Internet services were
severely affected for many hours and slightly degraded for
several months more. Such geographically correlated failure
events are called regional failures and, due to their significant
impact, are receiving increased attention [3]–[21]. Unfortu-
nately, in addition to natural disasters, network operators also
need to prepare more for destructive human activities, such as
terrorist attacks.

A. Related work

Computing availability in the presence of independent
single-point failures is a well-investigated topic (cf. [22] and
references therein). Also dealing with correlated failures has a
long history in the form of Shared Risk Link Groups (SRLG)
(e.g., [23]–[27]). An SRLG typically comprises few network
components (links or nodes) with considerable risk of failing
together. There have been some efforts to attach probability
values to an SRLG, called Probabilistic SRLG (PSRLG) [28],
[29]. Mostly, it is assumed that the risk groups are given, after
which, for example, a pair of risk-disjoint paths needs to be
found. There has been some work, e.g. [20], [30], where the
risk groups are based on the proximity of links to each other,
which may be considered a primitive form of geographically
correlated failures.

Much of the work on regional failures has assumed a given
disaster shape (often circular disk, or even line segments)
and, under that particular model, has addressed specific sub-
problems in network planning, like finding the most vulnerable
part(s) of the network [5], [6], [8], [12], studying the impact on
the network of a randomly placed disaster [16]–[18], designing
a network and its services with disaster resiliency in mind [9],
[11], [13], [14], and (re)routing of connections to minimize
service impact due to a disaster [10], [19]. Some work has
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Network:
Failure model: Type: tornado earthquake EMP . . .
Model parameters:
pd: the probability of a disaster of type d in a specific geographic area and time period;
h(p): quantitative hazard map of the area, that is the probability density function of the
location of the disaster epicenter (e.g. uniform distribution on a bounded area on R2);
r(p, s): the shape function of the disaster depending on epicenter p and size s returning the
damaged zone of the disaster (e.g. a circular disk centered on p with radius s · 50km);
Regional failure model:
Hazard epicenter: random variable on R2 with probability density h().
Relative size: random variable uniform distribution on [0, 1]. Each link fails having a point in
the disaster area defined by shape function r(), the rest remain intact.

×r(p, 1)

Output:
P (a) =.0055 P (b) =.0055 P (c) =.005

P (d) =.005 P (e) =.005 P (f) =.005

P (a, b) =.00068 P (b, e) =.00064

P (a, e) =.00064 P (c, e) =.00056

P (d, e) =.00056 P (d, f) =.00056

P (c, f) =.00056 P (c, b) =.00052

P (a, d) =.00052

P (a, e, d) =.00031 P (b, e, c) =.00031

P (a, b, e) =0

Fig. 1. An illustration of the problem inputs and outputs.

considered probabilities, either in the context of a disaster
having a certain probability to disconnect a link, e.g. [7], or in
the context of only having partial (probabilistic) information
on the geographical layout of a network, e.g. [15].

While the above-mentioned papers considered geographi-
cally correlated failures, a common property of the targeted
sub-problems is to search for the location(s) where a disaster
will cause the maximum expected damage to the network. In
particular, the result is the expected value of a sum of random
variables. This is a crude averaging process which is unable
to exhibit correlations among many important failure events.
The problem of precisely calculating the correlations between
link failures, in order to be able to conduct a more thorough
network vulnerability assessment, has not been addressed.

B. Availability of correlated links
To evaluate the availability of network services, we need

the following two primitives: (i) the probability of a failure of
a single element within a given set S and (ii) the probability
of simultaneous failure of all elements in a given set S. All
the other use-cases can be computed by iteratively calling the
above two primitives.

Fig. 1 shows an example network and the corresponding
failure probabilities on the right. Suppose we need to establish
a high-availability connection from the top node through work-
ing path of link b and protection path a−e. The unavailability
of the working path can be computed as P (b) = 0.0055, and
for the protection path it is P (a)+P (e)−P (a, e) = 0.00986.
In the traditional approach, the two paths are assumed to
fail independently; thus, the total connection availability is
estimated as 1− 0.0055 · 0.00986 = 0.999945, i.e. four nines.
However, considering the joint failure probabilities of the links
(provided in the example), the total connection availability
should be 1 − P (a, b) − P (b, e) + P (a, b, e) = 0.9987, i.e.
not even three nines, which is a significant difference.

Unfortunately, (correlated) network failures are hard to
compute and predict. Nonetheless, in order to evaluate the
expected availability of a service, a network administrator
should consider all possible failure scenarios under the specific
service availability model stipulated in the corresponding
service-level agreement.

C. Main contributions
The main contributions of this paper are the following:

• To our knowledge, this is the first study developing a
general stochastic model of disasters in order to explicitly
capture the correlations between link failures, as a result
of regional failures.

• We devise a pre-computation process to perform the
necessary numerical integration off-line. In terms of the
network size, there may be exponentially many joint
failure events. However, we construct a succinct rep-
resentation of the joint probability distribution of link
failures, which under some practical assumptions has
space complexity O((n+ x)ρ3), where n is the number
of nodes, x is the number of link crossings (in practice
x� n), and ρ represents a density of the topology, which
is independent of the network size.

• We provide a proof-of-concept implementation and simu-
lations to demonstrate how the above-mentioned stochas-
tic model can be efficiently computed, even on com-
modity computers. This facilitates comprehensive service
availability analyses considering disaster failures.

This paper is organized as follows: Sec. II explains the
stochastic model we use to represent regional failures. Sec.
III proposes an off-line pre-computation process with per-
formance guarantees. Sec. IV demonstrates how the pre-
computation and the query of the data structure can be
computed efficiently. Sec. V provides a numerical evaluation
of the proposed schemes and we conclude in Sec. VI.

II. THE NETWORK AND REGIONAL FAILURE MODEL

To compute the availability of a path composed of a set of
network elements (links and nodes) S, we need to compute
the probability that any item of a set of network elements fails.
The availability of the path is at least 1−

∑
e∈S P (e), where

P (e) denotes the failure probability of network element e. In
case of independent failures or even under light correlation, if
P (e)� 1, this bound gives a good estimate on the availability.

To compute the probability that a set of links (usually form-
ing a cut) fails, we need to answer the question: what is the
probability that a set of links S fails simultaneously? Let us
denote the above probability by P (S), which typically has a
more complex relation with the correlation structure of the link
failures: both exclusivity of the events or strong correlation
can affect the result substantially. To answer the question, we
propose a general stochastic model of the possible network



(a) Hazard map h(p) for earthquakes
as function of epicenter p. [32]
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(b) Shape of the regional failure
r(p, s) for epicenter p and differ-
ent sizes s = 0, 0.3, 0.6, 1.

Fig. 2. Example of real-world inputs.

failure events. This, after some pre-computation, will allow
us to build a succinct representation of the joint probability
distribution of link failures. In our model, the failures are
considered to come solely from disasters affecting a bounded
geographical area. We focus only on the failed links, where a
node failure is manifested as the joint failure of the set of all
links adjacent to the node.

While traditional approaches focus on single-point failures,
which represent hardware/node failures, cable/link cuts, etc.,
we adopt a model for regional failures and focus on computing
the conditional probability Pd(S) that, in a given time period,
a set of links S fail together under a disaster of type d (e.g.,
a tornado, earthquake, Electromagnetic Pulse (EMP), etc.).

Assumption 1: We assume that, in the investigated time
period, there will be at most one disaster.1

In such a case, to obtain the availability values, we need
to build a model for each disaster type, and the resulting
availability of S can be expressed as 1 −

∑
d∈D pd · Pd(S),

where D denotes the set of failure types modeled and pd is the
probability of disaster d. From now on, for ease of notation, we
will consider a fixed failure type d, and therefore, the subscript
d is omitted hereafter.

A. Stochastic Modeling of Regional Failures

The network is modeled as an undirected connected geo-
metric graph G = (V,E), with n = |V | nodes and m = |E|
links embedded in R2. The links can be either line segments
or polylines built up from adjacent line segments. Note that
our algorithms are mostly linear in the network size, thus a
link represented by adjacent line segments, can be modeled as
a series of 2-dimensional points.

We model regional failures caused by a disaster with the
following parameters with randomly chosen values:

epicenter p, which is a point in the plane R2,
shape (and size) s, which is a real value in [0, 1].

Each point p ∈ R2 is assigned with a hazard h(p) representing
the probability that p becomes the epicenter of the next
disaster (see Fig. 2a). Specifically, h(p) is a probability density
function on the area R2, and therefore,∫

p∈R2

h(p)dp = 1 . (1)

1The case when more disasters are expected to happen simultaneously can
be handled by defining a new mixed disaster type, see also [31].

After a regional failure of the examined type (e.g. EMP
attack, natural disasters, such as solar flares, earthquakes,
hurricanes, and floods) the physical infrastructure (such as
optical fibers, amplifiers, routers, and switches) in some area
is destroyed. The possible shapes for this area are defined by
a set r(p, s) that represents a closed region on the plane (the
actual shape of the area in which every communication link
is destroyed) as a function of epicenter p and the shape/size
parameter s. This is a general disaster model, where several
possible damage areas can be defined by r(p, s).

Definition 1: We assume a regional failure of epicenter p
and shape/size s will result in a failure of every link of network
G that has a point in r(p, s). A disk failure is a special type
of regional failures where r(p, s) are always circular disks.
We assume that r(p, s) is monotone increasing in s (see Fig.
2b for an example)2, or more formally we assume that

Assumption 2:

r(p, s) ⊆ r(p, s′) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1 , (2)

r(p, s) for a given p is a result of uniform sampling of damage
areas. Namely, for a given p the probability of the failure to
be of size smaller than s is exactly s. Thus, s is called relative
size in the remainder of the paper.

It is important to notice that given the disaster epicenter
and relative size, the outcome of the attack is deterministic.
In other words, any link e within r(p, s) fails with probability
1, if a failure event with parameters p and s occurs. Let us
denote the set of failed links by R(p, s). Assumption 1 implies
that, given a point p, R(p, s) ⊆ R(p, s′) if s ≤ s′. Let s(p, e)
denote the corresponding smallest size s for which a failure
at point p can cover link e. Furthermore, we denote by ρ the
maximum number of links that can be affected by a single
failure (of maximum size s = 1):

ρ = max
p∈R2

R(p, 1) . (3)

B. The Probability of Multiple Failing Links

First, we will explain how to compute the probability that
a set of links S ⊆ E fail simultaneously in the next disaster.

Let f(e, p) be the probability that link e fails if a disaster
with epicenter p happens. Note that f(e, p) > 0 can occur iff
e ∈ R(p, 1). f(e, p) can be computed from R(p, s), where s
is in the range [0, 1]. Hence,

f(e, p) =

∫ 1

s=0

IR(p,s)(e)ds , (4)

where the indicator function IR(p,s)(e) indicates whether e ∈
R(p, s). Thus,

IR(p,s)(e) =

{
1 if e ∈ R(p, s) ,

0 otherwise.
(5)

2Various failure shapes were studied so far [3], [5]–[20], mainly in the form
of circular regional failures or line-segment failures, but in some cases also
for arbitrary geometric objects [7], [8]. All of these models meet Assumption
2. Note that we do not require the regions to be connected, but can be the
union of multiple disjoint sets as a part of the same disaster (e.g. s = .3 on
Fig. 2b).



If IR(p,s)(e) = 1, then IR(p,s′)(e) = 1, for s ≤ s′.
We now extend our notation to capture the probability of

the failure of link e in the next disaster:

P (e) :=

∫
p∈R2

h(p)f(e, p)dp. (6)

We denote the probability that a set of links S ⊆ E fail
simultaneously, given that the disaster epicenter is p ∈ R2:

f(S, p) :=

∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds . (7)

In other words, if the sequence of links is S =
(e1, e2, . . . , e|S|) ⊆ R(p, 1) and s(p, e1) ≤ s(p, e2) ≤ · · · ≤
s(p, e|S|), then

∏
e∈S IR(p,s)(e) = 1 iff s ≥ s(p, e|S|),

otherwise the product is 0. This implies that

f(S, p) = f(e|S|, p) = min
e∈S

f(e, p) . (8)

Finally, P (S) denotes the probability that all links of a given
set S fail simultaneously. Using the above results:

P (S) =

∫
p∈R2

h(p)f(S, p)dp =

∫
p∈R2

h(p) min
e∈S

f(e, p)dp .

(9)
For example, on the right of Fig. 1, the results of applying

the formula to the 5-node network are shown for all the non-
zero joint link failure probabilities. In this example, r(p, s)
is always a circular disk of radius s · 50km. Potentially there
are exponentially many joint failure events in terms of the
network size; however, links far from each other have zero
probability to fail jointly because of a single disaster. This
holds, for example, for links f and e, whose smallest distance
is 200km.

Former works (e.g., [7, in the proof of Lemma 8]) expressed
the joint failure probability of a set S by multiplying the
failure probabilities of the links in S, thus implicitly assuming
these failures are independent. Unlike [7], our model assumes
deterministic failure outcome (once its epicenter and shape are
set). This implies that, in our model, failures are dependent.
For example, two lines in the same location (e.g., within the
same conduit) always fail together (e.g., when the conduit is
cut).

C. Example of the Geographical Correlation of Failures
In this section, we first consider a simple linear and discrete

model for some of the ideas presented so far. We assume that
the ground set of our simplified world is the set of 1000 integer
points of a line with coordinates between zmin = −499,
zmax = 500 and we have two links e0 and ez , which
themselves are integer points from the interval [−499, 500], e0
is at position 0, and ez is at position z. Let the probability that i
is the location of a disaster be hi = 10−3 for i = −499, . . . 500
so that

∑500
i=−499 hi = 1. According to Eq. (9), the probability

of the failure of link e0 is

P (e0) :=

500∑
i=−499

hif(e0, i) , (10)
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Fig. 3. An example of fi(0) at different i positions and the corresponding
P (ez |e0) depending on z. Former models assumed the link failures are
independent given an epicenter of the disaster.

where f(e0, i) is the conditional probability that link e0 fails
if the failure is at position i. According to Eq. (9), the joint
probability of the failure of both links e0 and ez is

P ({e0, ez}) :=
500∑

i=−499
hi min(f(e0, i), f(ez, i)) . (11)

Let P (ez|e0) denote the conditional probability that ez fails,
on the condition that e0 fails. By definition we have

P (ez|e0) :=
P ({e0, ez})
P (e0)

. (12)

This is a function of z in our setting. Intuitively, P (ez|e0) is
close to 1 if the two links are exactly in the same location (i.e.
z = 0). Besides, P (ez|e0) should be a decreasing function of
z in the range of [0, 500]. See Fig. 3 for an example of f(e0, i)
values and the corresponding P (ez|e0).

III. PRE-COMPUTATION TO SPEED UP QUERIES

In the previous section, we have described a model that
generates a regional failure according to a hazard density h(p)
and a failure shape function r(p, s). Recall that our task is to
return P (S) for a set of links S ⊆ E, which is the probability
that links S fail together in case of disaster d.

Unfortunately, the calculation of integrals (9) can be a
computationally intensive process. Thus, our aim is to do some
preprocessing in advance, so that when a query comes on the
failure probability of an arbitrary set of links S, then the task
would be to sum up some of the pre-computed values. The
space complexity of the proposed data structure is related to the
number of pre-computed values. In [20], it was shown that the
number of joint link failure events with non-zero probability is
O((n+x)2ρ), where n is the number of nodes, x is the number
of link crossings, and ρ represents a density of the topology
(see Eq. (3)). To have a scalable approach, instead of storing
every non-negative joint probability, we will introduce a data
structure with O((n + x)ρ3) items, from which every joint
probability can be derived by summing up few items.

In the remainder of this section, we make the following
assumptions to be able to apply some computational geometry
results.

1) The shapes r(p, s) are limited to circular disks centered
at p. This corresponds to the case where the failure of



a link e depends on the Euclidean distance dist(p, e) of
e to the epicenter of the disaster p. In this case, instead
of r(p, s), the input is given by d as a function of s.
The maximum radius r is the same for every point, i.e.
r(p, 1) is a circular disks with radius r and center p for
∀p ∈ R2.

2) The relative size s is a uniformly Lipschitz continuous
function of radius d. That is, there exists a positive
number K such that for every point p in the plane, if we
have neighborhoods r(p, s′) and r(p, s) with respective
radii d′ and d, then |s′ − s| ≤ K|d′ − d| holds.

3) In our geometric reasoning, we will transform the links
of the graph into line segments by slightly shortening
them to ensure that no two segments share a common
endpoint (see the details of the transformation in Ap-
pendix A). We also assume no more than two links
intersect in the same point, and no more than two end
points lie on the same line.

For ease of presentation, we slightly reduce the domain we
are integrating over. Let P denote the set of points p of the
plane such that dist(p, e) 6= dist(p, e′) whenever e and e′ are
different segments from E. We have that R2 \P is of measure
zero, hence in our considerations integrating over the plane
R2 can be replaced by integrating over P .

Inspired by (8), now we can define the sequence of possible
link failures (see Fig. 4a), when the epicenter of the attack is
at p:

Definition 2: The sequence of link failures for epicenter
p ∈ P is an ordered set of links S(p) = (e1, e2, . . . , el),
such that s(p, e1) < s(p, e2) < · · · < s(p, el), where
l = |R(p, 1)|. Let Sj(p) denote the first j links of S(p), i.e.
Sj(p) = (e1, e2, . . . , ej).

Furthermore, the ordinal number of a set S within S(p) is
defined as follows:

Definition 3:

j(S,S(p)) =

{
j, if S 6⊂ Sj−1(p) and S ⊆ Sj(p)
0, otherwise.

Due to Assumption 2 and using also (9), if there is a disaster at
point p, the conditional probability of a set of links S ⊆ S(p)
failing together is

f(S, p) = f(Sj(S,S(p))(p), p) = f(ej(S,S(p)), p) . (13)

Finally, we use two practical input parameters, x and ρ, in
estimating the space complexity of our approaches. Let x be
the number of link crossings in the network G. For backbone
networks, x is a small number, as typically a switch is also
installed on each link crossing [33]. The second parameter
is ρ, the link density of the network, which is defined as the
maximal number of links that could fail together (i.e. could be
covered by a circle of radius r). The link density ρ, practically,
should not depend on the network size. Moreover, ρ is at least
the maximal nodal degree in the graph.

e3

e1

e2

×
p

S(p) = (e1, e2, e3)

(a) The sequence of link failures for
epicenter p.

e1

e2

(b) The bisector curve of two line
segments e1 and e2.

Fig. 4. Illustration of definitions in Sec. III

A. Basic Upper Bound on the Number of Regions

To derive a basic upper bound on the number of regions,
we could consider dividing the plane P into disjoint regions,
where every point in each region has the same sequence of
link failures. Let R1, . . . , Rk denote such a set of mutually
disjoint regions, where k denotes the total number of possible
sequences of link failures with respect to any point p in the
plane as epicenter (see Fig. 5a). Let Si denote the sequence of
link failures corresponding to any point p ∈ Ri, i.e. S(p) ≡
Si, for i = 1, . . . , k.

Based on the observation of (13), it is sufficient to pre-
compute and store the following integrals:

P i,j =

∫
p∈Ri

h(p)f(ei,j , p)dp i = 1, . . . , k, j = 1, . . . , |Si|,

(14)
where ei,j denotes the j-th link in Si.

Finally, since the regions are mutually disjoint as a subset
of P and cover it entirely, equation (9) can be written as a
sum and, according to (13), the failure probability of any link
set S ⊆ E can be evaluated as

P (S) :=

k∑
i=1

∫
p∈Ri

h(p)f(S, p)dp =

k∑
i=1

P i,j(S,Si) , (15)

where we define P i,0 := 0 for every i = 1, . . . , k.
Lemma 1: If the r(p, s) are circular disks, then the number

of regions k with different failure sequences is O(m4), where
m is the number of links.

Proof: Recall that our line segments are either disjoint
or intersect in points that are not endpoints of the respective
segments. Let e1 and e2 be two such segments. Then P can be
divided into two disjoint (not necessarily connected) domains
D1 and D2. The points p ∈ D1 are closer to e1 than to e2, and
the points p ∈ D2 are closer to e2 than to e1. These domains
are bordered by the bisector curve L, which is composed of
a finite B number of line segments and parabola arcs. The
bisector L of two regions line segments is a simple curve that
disconnects the plane into two domains and that can be split
into at most seven [34, Lemma 19.2.3] such arcs (see Fig. 4b).
In general, for intersecting segments, L may be the union of
two simple curves and we obtain a larger bound B. Note that,
if e1 and e2 intersect each other, then D1 and D2 composed
of 2 + 2 regions and L is composed of two simple curves
intersecting each other.



To complete the proof, we show that the bisectors of the
b = m(m−1)

2 link pairs divide the set P into at most O(m4)
regions. In fact, these bisectors together are a union of at
most 2b simple curves C, where any such simple curve is
composed of at most B parts, each part being a segment of
a parabola or a line. Note that any pair of such segments in
general position intersects an other in at most four points.
Moreover, any two such simple curves C intersect each
otherin at most 4B2 points. Thus, the curves C have at most
2b · 4B2 intersection points, dividing up the curves into at
most 2b ·(4B2+1) = O(m2) curve segments without division
points. The total number of such curve segments is at most
2b · O(m2) = O(m4). But this gives a bound on the number
k of regions as well, since each such curve segment bounds
at most two regions and every region has a bounding curve
segment.

Next we show that the above bound is tight up to a constant
factor. We will define a network by specifying coordinates for
the links in R2. For a positive integer m, the network will
have 2m links. The first m are vertical line segments, where
the i-th line segment connects the point (2i, 0) to (2i, 2m)
for i = 1, . . . ,m. The bisector curve between the i-th and
j-th link is the vertical line whose equation is x = 2i+2j

2 .
Clearly, x is always an integer, and all the

(
m
2

)
bisector lines

correspond to different integers. Overall, they define
(
m
2

)
+ 1

regions, each with different sequence of link failures among
the first m links. The second collection of m links is placed
in a vertical direction in the same way: (0, 2j) is connected
to (2m, 2j), for j = 1, . . . ,m. Now the 2m segments will
define

((
m
2

)
+ 1
)2

= Ω(m4) regions with different orders in
the sequence of link failures.

Theorem 1: If r(p, s) are closed circular disks, then the
space complexity of the basic data structure defined by (14)
is O((n+ x)ρ6).

Proof: According to [20, Cor. 4]3, there are at most
O((n+x)ρ) SRLGs, such that each SRLG is a set of at most
ρ links that can be covered by a circular disk of radius r. Note
that every sequence of link failures is a subset of an SRLG.

To complete the proof, for each SRLG S we will count
the possible number of sequences of link failures that can
be composed from S. Recall that, according to Lemma 1, ρ
links may define O(ρ4) failure sequences. This adds up to
O((n + x)ρ5) for k in (15). Finally, j(S,Si) ≤ ρ, thus each
failure sequence consists of at most ρ items in (15).

B. Improved Upper Bound on the Number of Regions

To achieve an improved bound, we will take advantage of
recent results of higher-order Voronoi regions. The high-level
idea is to merge some of the regions defined by the sequence
of link failures. The key observation is that in the integral of
(9), for a given set of links S, only the link e with the largest
relative distance s matters and the order of the links S \ e is

3Note that, ρ is denoted by σr in [20]. Here we use the assumption that
the radius of r(p, 1) is equal to r for every point p in the plane.

(a) Regions with same
sequence of link failures.

(b) Nearest Neighbor
Voronoi Diagram

(c) (1, 1)-Voronoi dia-
gram

Fig. 5. Different partitions of the plane into regions in the pre-computation
process.

irrelevant; thus, the corresponding regions can be merged. To
do so, we will generalize the higher-order Voronoi regions, and
introduce the (k, 1)-Voronoi diagram for line segments, where
each region (a.k.a. cell) has the same set of k nearest neighbor
line segments and the same line segment as the (k+1)th nearest
neighbor (see Fig. 5b and 5c).4

Let H ⊂ E be a set of line segments and e ∈ E \H be a
line segment. The Voronoi region R(H, e) of the pair (H, e)
is the set of points p ∈ P for which the |H| closest segments
from E are exactly the elements of H (in an arbitrary order)
and the |H|+ 1-th is exactly e. We shall apply a result from
[35]. For this reason we assume that x = o(n2).

Lemma 2: The number of nonempty Voronoi regions
R(H, e), with |H| = k − 1, is at most O(k2(n− k) + kx)).

Proof: R(H, e) is contained in exactly one order-k
Voronoi region [35], the one belonging to the set Y = H∪{e}.
Conversely, for any set of links Y with |Y | = k the order-k
Voronoi cell of Y contains at most k nonempty sets of the
form R(H, e). These are the sets R(Y \ {e}, e) with e ∈ Y .
We know from [35, Thm. 5] that the number of k-Voronoi
cells is O(k(n− k) + x).

Next we pre-compute the integrals

P (H,e) :=

∫
p∈R(H,e)

h(p)f(e, p)dp ∀R(H, e) , (16)

for each of the O(k2(n − k) + kx) Voronoi regions for k =
1, . . . , ρ, where (H, e) ranges over the pairs, such that H is
a subset of E, e ∈ E \H and |H| + 1 ≤ ρ, and R(H, e) is
nonempty.

Let S ⊆ E be a set of links, then

P (S) =
∑

P (H,e) , (17)

where summation is for the pairs (H, e) with |H| < ρ, S ⊆
H ∪ {e}, e ∈ S \H . Note that for two such pairs (H, e) and
(H ′, e′) the corresponding regions R(H, e) and R(H ′, e′) are
disjoint: If p is in both of them, then the farthest segment of
S from p is e and e′, hence e = e′. If e is the k-th farthest
segment of E from p, then the k−1 preceding segments form
H = H ′. Moreover, any point p ∈ P , for which f(e, p) 6= 0
and e is the farthest segment of S from p, does belong to one
of the Voronoi regions R(H, e) listed on the right hand side.

4Note that the (0, 1)-Voronoi diagram is equivalent to the nearest neighbor
Voronoi diagram.



Indeed, let H be the set of segments e′ ∈ E closer to p than
e. On a region R(H, e), as above, we have by (9)∫

p∈R(H,e)

h(p)f(S, p)dp =

∫
p∈R(H,e)

h(p)f(e, p)dp .

Theorem 2: If r(p, s) are circular disks, the space complex-
ity of the improved data structure is O((n+ x)ρ3).

Proof: The data structure stores P (H,e) for every possible
(H, e) pair that could appear in the formula (17). Note that
in the formula (17) the value of |H| is 0, . . . , ρ − 1. Finally,
Lemma 2 gives an upper bound on the number of Voronoi
regions R(H, e) as O(k2(n−k) +kx)) ≤ O((n+x)k2) with
k = 1, . . . , ρ.

IV. IMPLEMENTATION ISSUES

In Section III, we provided approaches with performance
guarantees under the assumption that the shape of the regional
failure is always a circular disk. In this section, we suggest
implementing another approach with the following features:
(1) it can accommodate any shape for the disasters, (2) it
is easy to implement as it does not require any advanced
geometric algorithms, while the time of pre-computation is
rarely a concern, and (3) it nicely processes digital inputs as
it uses discrete functions instead of continuous ones.

We discretize the problem by defining a sufficiently fine
resolution, say 1 km, and place a grid of 1 km × 1 km squares
over the plane to assume that the disaster regions r(p, s) and
hit link sets R(p, s) are “almost identical”5 for every p inside
each grid cell c. This way the whole integration problem boils
down to a summation. We will define the inputs over the grid,
and consider R2 as a Cartesian coordinate system. We will
define r(p, s) over the Cartesian coordinate system, so that
for each c we will define an s value for the neighboring c. Let
r denote the absolute maximum range of a disaster in km. Let
(xmin, ymin) be the bottom left corner and (xmax, ymax) the
top right corner of a rectangular area in which the network
lies. It is sufficient to process each c in the rectangle of
bottom left corner (xmin − r, ymin − r) and top right corner
(xmax + r, ymax + r), and we denote by ci,j the grid cell in
the i-th column and j-th row. In this range, for each ci,j , we
will consider the probability hi,j of the next disaster having
epicenter p in the cell ci,j , i.e. hi,j =

∫
p∈ci,j h(p)dp.

For each c, we will compute the sequence of link failures
and store the link sets and corresponding s values as follows.
We implemented three types of data structures to store the
failure probability of link sets. The first and second types are
described in Subsec. III-A and III-B, and their length can be
upper bounded in case of failures corresponding to Sec. III, let
us call them Basic and Improved, respectively. While both of
them have similar computation time and a size linear in (n+x),
Improved appears to use significantly smaller space than Basic
(see Fig. 7), thus we omit discussing the implementation issues
of the Basic structure. To return the failure probability of any

5In particular, we may assume that f(e, p) is independent of p as long as
it is in c. We denote this common value by f(e, c).

link set, in case of both structures, one must go through this
list and sum up the corresponding elements.

The query time of sets can be reduced to a constant with
very high probability (with the help of hashing) if the data
structure stores every possibly failing link set, which is the
third data structure we have, called Complete. Using self-
balancing binary trees, its worst-case query time is always
O(ρ log((n+x)ρ)), which is still very impressive. The draw-
back of structure Complete is that it has an Ω(2ρ) space
complexity, which makes it very inefficient for bigger network
densities.

1) Improved structure: We use an associative array I,
which can be addressed by a pair of an (unordered) set of
links H and a link e, with e 6∈ H , and returns a series of
probability values p, one for each index entry. In the pre-
computation process, we build up I as described in Algorithm
1. We take every little square ci,j and determine the sequence
of link failures belonging to epicenters p ∈ ci,j (see Def. 2),
denoted by Si,j = (e1, . . . , ek), where k = |Si,j | ≤ ρ. We
take the first l links of Si,j for l = 1, . . . , k and check if
the pair of link set {e1, . . . , el−1} and el is in I (note that
for l = 1 the link set is an empty set). If it is not, we add
it to I with probability value hi,j · f(el, ci,j); otherwise, we
add the previous probability value to its stored version (i.e. to
I
[(
{e1, . . . , el−1}, el

)]
).

Algorithm 1: Building up associative array I
for i = xmin−r, . . . , xmax+r, j = ymin−r, . . . , ymax+r do

Determine Si,j = (e1, e2, . . . , ek).
for l=1,. . . , k do
I
[(
{e1, . . . , el−1}, el

)]
+ = hi,j · f(el, ci,j)

Note that for circular disk failures Thm. 2 provides an upper
bound of O((n+ x)ρ3) on the number of items in I.

To compute the probability that a set of links S fail simul-
taneously, we need to examine every item in the associative
array as described in Algorithm 2.

Algorithm 2: Computing P (S) with the Improved structure

p = 0 ;
forall the

[(
{e1, . . . , el−1}, el

)
→ pi

]
∈ I do

if S ⊆ {e1, e2, . . . , el−1} ∪ el and el ∈ S then
p = p+ pi;

return p

2) Complete structure: We use an associative array C,
which can be addressed by an (unordered) set of links
{e1, e2, . . . , ek} and returns its joint probability value. In this
case, in the pre-computation process, we have to extract the
contribution of ci,j to the failure probability of every subset
S of links. We do this by working with the list Si,j =
(e1, e2, . . . , ek), and increment the C values accordingly, i.e.
C[{e1}]+ = hi,j · f(e1, ci,j), C[{e2}]+ = hi,j · f(e2, ci,j),
C[{e1, e2}]+ = hi,j · f(e2, ci,j), etc. For P (S) we need to
look up S in C. If not found, then P (S) = 0.
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V. SIMULATION RESULTS

In this section, we present numerical results that validate
our model and demonstrate the use of the proposed algorithms
on some real backbone networks. The algorithms were imple-
mented in Python 2.7.12., using its various libraries6. Run-
times were measured on a commodity laptop with core i5
CPU at 2.3 GHz with 8 GiB of RAM.

All three structures were generated for networks from [36]
for maximal radii r = 10, 25, 50, 75, . . . , 500 km. The hazard
map h(p) is a uniform distribution in the bounding rectangle
described in Sec. IV. The shape r(p, s) is a circular disk with
centre p and radius r · s. I.e., we select circular disk failures
having a range from a uniform distribution over [0, r].

Since the running time of the pre-computation is dominated
by the construction of sequence of link failures for all c, there
is no significant difference between the construction time of
Basic and Improved structures for the same environment. See
the average and maximum time in Fig. 6d with respect to the
resolution. The solution quality very moderately improves for
resolutions higher than 1000× 1000.

For smaller network densities, the running time of Complete
is similar too, but at a given point (ρ ' 14) the exponential
factor 2ρ at the space (and therefore time) requirement require-
ment starts to kick in. See also Fig. 6c for how ρ increases
with r. In other words, due to its very short query time,
Complete outperforms the other structures for small maximum

6The source code will be released as open-source software along with the
simulation data, upon publication of this paper.

radii (< 150km in case of the studied networks), but becomes
unacceptably large and slow to compute at larger maximum
radii (> 200km). Improved is more compact than Basic, and
in the area of larger radii this difference is significant (see Fig.
7). We can conclude that, in backbone networks, Complete is
the best choice for disasters ranging to at most 200km radius
of the destroyed area, but if r > 200km, we should stick to
Improved.

Fig. 6a and 6b show a distribution of the probabilities
of stored items in the associative arrays. For Complete, it
is the distribution of the failure probabilities of the set of
links. Here f(x) equals to the failure probability of the xth

most probable link set. We can witness the emergence of a
power-law distribution with exponential cutoff. In practice, the
service availability is computed with some precision, and the
link sets with very small probability to fail are not stored and
used in the evaluation. For example, if we ignore the link
sets with probability less than 10−4, it is sufficient to deal
with at most 5000 items. Roughly speaking, the power-law
distribution means, if we want to increase the precision with
one more nines, we need to quadruple the size. The same idea
can be used for Improved (and Basic), see Fig. 6b.

We have also investigated the average probability of a set of
links with given cardinality. Fig. 6e shows the average failure
probability with respect to the number of links failing together.
Single links have an average probability of 0.015 to fail, the
listed double links 0.0014, the triple 0.00022, which meets our
expectation that the correlation between link failures is signif-



icant. Fig. 8 further investigates the dependency between the
failure probability of a set of links and the set cardinality. We
grouped the elements S of Complete by their size |S|: there are
108 single link failures in NSFNet whose failure probabilities
range between [0.0037, 0.014], there are 1245 dual link failures
with non-zero probabilities between [10−6, 0.003], there are
6189 triple link failures with non-zero probabilities between
[10−6, 0.0014].

VI. CONCLUSION

In this paper, we have proposed a general stochastic model
of regional failures of a physical network. In particular, we
have evaluated the joint failure probability of a set of links.
The evaluation is composed of the pre-computation and query
phases. The pre-computation is performed off-line during
the network planning, which requires to compute numerical
integrals using hazard maps and information about the network
equipment. As a result of pre-computation, all the probabilities
of link sets with positive joint failure probability are stored, if
feasible (for disaster ranges <∼ 150km in our experience); or
else a space-efficient data structure is formed that enables to
quickly compute the joint failure probability of an arbitrary
set of links. We have proved that the latter data structure
stores O((n + x)ρ3) items, if the failure of a link depends
only on the distance to the epicenter of the disaster, where n
is the number of nodes, x is the number of link crossings (in
practice x� n), and ρ is the maximal number of links subject
to a disaster failure. Our approach facilitates a comprehensive
service availability analysis, and can be used to answer related
questions, such as where to place VMs in order to guarantee
a certain SLA.
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APPENDIX

A. Geometric Transformation of the Network

In our geometric reasoning we transform the links of the
graph into line segments. We also need to ensure that no
two segments share a common endpoint. In the network the
adjacent links terminate in a single node; thus, we need to
perform a minor transformation as follows.

Let S ⊆ E be a set of segments and ε > 0 a small number.
Suppose that we shorten some segments e of S, in a way that
we delete ε long subsegment from both ends, in such a way
that the deleted intervals do not overlap. Let S′ denote the set
of segments S after shortening.

Lemma 3: We have f(S, p) ≥ f(S′, p) and f(S, p) −
f(S′, p) ≤ εK hold for every point p.

Proof: For the first inequality note that

f(S, p) =

∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds

≥
∫ 1

s=0

∏
e′∈S′

IR(p,s)(e
′)ds = f(S′, p) (18)

because IR(p,s)(e) ≥ IR(p,s)(e
′) holds for every s, whenever

e ∈ S.
We turn now to the second inequality. Let s be the smallest

value such that
∏
e∈S IR(p,s)(e) = 1 (if there is any), and set

s′ = s+ εK. Let d and d′ be the radii of r(p, s) and r(p, s′),
resp. By the Lipschitz property we have

εK = s′ − s ≤ K(d′ − d)

giving that d′ > d + ε. We know by the definition of s that
r(p, s) intersects every segment e ∈ S in some point Qe. But
then r(p, s′) intersects e′. This holds, because the larger disk
r(p, s′) clearly contains the disk of radius ε centered at Qe,
and the latter disk must intersect e′ because we deleted disjoint
subintervals of length at most ε from e to obtain e′. We have
therefore

∏
e′∈S′ IR(p,s′)(e

′) = 1, hence

f(p, S)−f(p, S′) =

1∫
y=0

(
∏
e∈S

IR(p,y)(e)−
∏
e′∈S′

IR(p,y)(e
′))dy

≤
s′∫

y=s

1dy = εK. (19)

We transform our set of segments into one, where no
segment e has an endpoint A on any other segment. If we
have such segment, then we carry out the transformation by
deleting an ε long subsegment of e starting at A. Lemma 3
gives that if we set ε sufficiently small, then all the values
f(p, S) and f(p, S′) will be very close to each other, hence
P (S) and P (S′) will be very close to each other. Moreover, for
any two segments e1, e2 ∈ E, we have that either e1∩e2 = ∅,
or e1 ∩ e2 is an interior point of both segments.


