
Improving big data application performance in
edge-cloud systems

Dávid Haja∗†, Balázs Vass†, László Toka∗†‡
∗MTA-BME Network Softwarization Research Group †Budapest University of Technology and Economics

‡MTA-BME Information Systems Research Group

Abstract—Data analysis is widely used in all domains of the
economy. While the amount of data to process grows, the time
criteria and the resource consumption constraints get stricter.
These phenomena call for advanced resource orchestration for
the big data applications. The challenge is actually even greater at
the advent of edge computing: orchestration of big data resources
in a hybrid edge-cloud infrastructure is challenging. The difficulty
stems from the fact that wide-area networking and all its well-
known issues come into play and affect the performance of the
application. In this paper we present the steps we made towards
network-aware big data application design over such distributed
systems. We propose a HDFS block placement algorithm for
the network reliability problem we identify in geographically
distributed topologies. The heuristic algorithm we propose pro-
vides better big data application performance compared to the
default block placement method. We implement our solution in
our simulation environment and show the improved quality of
big data applications.

Index Terms—Big data, edge, reliability, HDFS

I. INTRODUCTION

Edge-cloud computing [1] and mobile edge computing [2]

are novel concepts extending traditional cloud computing

by deploying compute resources closer to customers and

end devices. This approach, closely integrated with carrier-

networks, enables several future 5G applications and network

services, such as novel Industry 4.0 use-cases, Tactile In-

ternet, or remote driving. Edge resources provide execution

environments close to users in terms of latency (e.g., in

mobile base stations). By these means, on the one hand,

customers’ devices can offload computational tasks to this

environment instead of consuming their local resources. On the

other hand, functions can be transferred from central clouds

to the edge enabling latency-critical communication, required

by envisioned services. Many of the time-critical applications

belong to the domain of data analysis. Data processing is

performed in the edge either to provide the fastest possible

actuation or for lowering the network resource consumption

towards the cloud. In both cases the applications are deployed

in a hybrid platform, i.e., using computation and/or storage not

only in the edge but also in the cloud. In these cases however

the performance of the wide-area network greatly affects the

quality and the efficiency of the big data operation.

Today’s resource orchestration algorithms, used for big data

application scheduling, are usually designed for a single data

center. Consequently they do not consider the characteristics of

the underlying network, as reliability, latency and bandwidth-

capacity rarely pose problems in the typically dense data

center networks. However, these network aspects can easily

cause application performance degradation when the compute

infrastructure contains edge nodes inter-connected with wide-

area networking. The lack of sheer connectivity may cause

problems for the most widely used big data applications, even

though those were designed with robustness and redundancy

against node failures. We argue that this networking aspect

must be taken into account by a big data system designer, par-

ticularly in a geographically distributed edge-cloud scenario.

In this work, we engage in this problem domain and

propose a HDFS block placement method that can significantly

improve the system performance compared to the default

baseline. We propose a fast topology-aware method for HDFS

block placement in order to gain a 6-fold increase in HDFS

availability. Our general finding is that the widely used open-

source big data frameworks are not yet ready for hybrid edge-

cloud deployments where the quality of wide-area networks

might leave a huge mark on the application performance. Our

work is a pioneer step towards geo-distributed network-aware

orchestration of such systems: to the best of our knowledge,

these aspects have never been investigated in relation to big

data and edge-cloud infrastructure.

II. HDFS BLOCK PLACEMENT TO INCREASE DATA

AVAILABILITY

In this section we present how we can increase the avail-

ability of HDFS by carefully selecting the servers that host

HDFS blocks, based on the edge-cloud topology. We prove

that this is in fact a hard problem, and we show a fast heuristic

method that increases the block availability compared to what

the default HDFS algorithm achieves.

A. The HDFS block placement problem

Our proposed solution modifies the default rack-awareness

of HDFS with the ability of choosing not only from server

racks, but also among clusters. Our goal is to place HDFS

block replicas on the servers that are the most reliably reach-

able from the given vantage point, the HDFS client.

We model the edge-cloud topology with a graph in which

a vertex is one server, switch or gateway. We assume two

special vertices in the graph: a central vertex that represents

the Internet, and a client vertex from where the HDFS data

is being reached. The servers are grouped into server racks

which are further grouped into clusters. We distinguish two

types of clusters: data centers and edge clusters. Each cluster

187

2019 IEEE 12th International Conference on Cloud Computing (CLOUD)

2159-6190/19/$31.00 ©2019 IEEE
DOI 10.1109/CLOUD.2019.00039

contains at least one gateway node that provides the connection

between the cluster and the Internet. The nodes of the graph

are connected by undirected edges that correspond to physical

links. Each edge e is associated with a positive pe value that

represents the failure probability of the edge in a given time

frame. We consider that links fail independently of each other.

The failure value of a path between two arbitrary vertices, i.e.,

the probability of the path to break, is calculated based the p
values of the path’s edges. Let us have a path from source

vertex u to destination server v, containing only two edges

(denoted by u and v after their incident vertices respectively);

in this case the server’s reliability is equal to (1−pu)(1−pv) =
1 − pu − pv + pupv , where if pu and pv are small enough,

then pupv is negligible. Generally, a server’s reliability can

be approximated with 1−∑
u,v∈V pu,v , where pu,v gives the

failure probability between u and v neighbor vertices, for every

edge in the path. Our goal is to maximize this value to achieve

better reliability for accessing a server.

Let R denote the replication factor of HDFS blocks. We

argue that one should select servers that are reachable through

edge-disjoint paths.

Lemma 2.1: If the edge failure probability is sufficiently

low, then a collection of R edge-disjoint paths always provides

higher reliability than R non-edge-disjoint paths.

Proof: Let us look for R vertices v1, . . . , vR in the graph.

For simplicity, suppose that p is the same for every edge.

The probability of an overall failure of all the independent

paths, leading from the common vantage point to each of the

v1, . . . , vR vertices, for small p values can be approximated

by pR
∏R

i=1 li, where l1, . . . , lR are the lengths of the paths

to those vertices. Note that pR
∏R

i=1 li can be upper bounded

by pRER, where E is the total number of edges in the

graph. On the other hand, if there exists two paths having

at least one shared edge, the common failure probability is

lower bounded by pR−1. Based on these two bounds, in case

pRER < pR−1 stands, or equivalently p < 1
ER , i.e., the

p value is small enough which is usually the case in real

networks, the edge-disjoint path collections are more reliable

than non-edge disjoint path collections.

So if p is small enough, our task is to find disjoint paths in

a general graph. This is an NP-complete problem.

Lemma 2.2: In a highly reliable infrastructure the HDFS

block placement problem is NP-complete.

Proof: Based on disjoint path search in a general graph,

one can prove that there are instance families of our problem

in which finding the safest placement is at least as hard as

deciding whether feasible simple integer flows exist in the

general graph, which is a known NP-complete problem (Thm.

4 of [8]). The key of the proof is to extend the network

topology with an imaginary target node t, which is connected

to all the possible locations, i.e., v1, . . . , vR.

B. Our failure-aware algorithm for HDFS block placement

In this subsection we present our network failure-aware

heuristic algorithm, which places the HDFS blocks into the

edge-cloud topology.

In the initial phase the algorithm determines the reliability

of each server: it calculates the shortest path in terms of edge

failure probabilities from the vantage vertex to each server rack

(as all servers in a rack are reached on the same path with

the same reliability). The complexity of finding the shortest

path to all server racks is O(E + V log V), where V is the

number of vertices and E is the number of edges in the graph.

Then the algorithm sorts the servers in each cluster separately

by their assigned reliability values. The sorting can be done

in O(V log V). The complexity of the whole initial phase is

therefore O(E + V log V).

Algorithm 1 Cluster selection for HDFS block replicas

1: if replication factor > 2 then
2: two replica in one DC ← False
3: for (i = 0; i < replication factor; i++) do
4: ordered cluster list← order clusters by utilization(topology)
5: while i < 2 do
6: if any(cluster in ordered cluster list where

cluster.type! = ”edge” and cluster.available racks > 1) and
two replica in one DC is False then

7: chosen cluster ←first cluster from ordered cluster list
where cluster.type! = ”edge” and cluster.available racks > 1

8: two replica in one DC ← True
9: else

10: if any(cluster in ordered cluster list where
cluster.type! = ”edge” and cluster not used then

11: chosen cluster ←first cluster from
ordered cluster list where cluster.type! = ”edge” and cluster
not used

12: else
13: if any(cluster in ordered cluster list where cluster

not used then
14: chosen cluster ←first cluster from

ordered cluster list where cluster not used
15: else
16: chosen cluster ←first cluster from

ordered cluster list
17: end if
18: end if
19: end if
20: end while
21: if any(cluster in ordered cluster list where cluster.type ==

”edge” and cluster not used) then
22: chosen cluster ←first cluster from ordered cluster list where

cluster.type == ”edge” and cluster not used
23: else
24: if any(cluster in ordered cluster list where cluster not used)

then
25: chosen cluster ←first cluster from ordered cluster list

where cluster not used
26: else
27: chosen cluster ←first cluster from ordered cluster list
28: end if
29: end if
30: end for
31: else
32: for (i = 0; i < replication factor; i++) do
33: chosen cluster ← (ordered cluster list[i])
34: end for
35: end if

Alg. 1 describes how our algorithm selects clusters for the

replicas. First, it sorts the clusters by their utilization; after that

if the replication factor is less than three, it puts one replica in

the least utilized cluster and another one into the second least

utilized cluster. If the replication factor is greater or equal to

three, it tries to place the first two replicas following the policy

that prioritizes data centers against edge-clouds: 1) Place them

in a data center where two racks have available free space; 2)

Place them in two separate data centers; 3) Place them in two

separate clusters; 4) Place them in the least utilized cluster.

188

In the chosen cluster(s) the algorithm disperses the first two

replicas to different racks, chosen based on their decreasing

order of reliability. Further replicas will be dispersed among

edge clusters. During this second phase, in the worst case, the

selection of racks iterates through all the vertices four times for

each replica (see Alg. 1 for details). So the overall complexity

of our HDFS block placement algorithm is O(E+V (log V +
R)), where R is the replication factor.

C. Simulation settings and results

We evaluated our heuristic algorithm against default HDFS

block placement method in case of network failures. In

simulations we used two data center topologies: CLOS [7]

and Fat Tree [6]. Each topology had 50 edge clusters and 5

data centers. We assumed that each edge had “four nines”

availability in a data center, while links in the edge clusters

had only “three nines” availability, i.e., the edge cluster links

are ten times more likely to fail than the data center’s. An edge

failure might be due to the failure of a device and/or a physical

link, and also due to misconfigurations, power outages, etc. In

each simulation the default HDFS replication factor value (3)

was used. In order to evaluate the effect of network failures on

HDFS, a simulation first fills the servers with HDFS blocks,

then randomly removes edges from the topology until data loss

happens. Data loss is when all of the replicas belonging to one

HDFS block are unreachable from the HDFS client vertex,

our vantage point. We recorded the number of unavailable

vertices when the data loss happened: a vertex is considered

unavailable if it is unreachable from the vantage vertex.

Fig. 1. HDFS block availability simulation results at the first failure

In Fig. 1 we show the results: in each bar group (representing

different data center topologies) the bars depict the percentage

of unavailable vertices when the first HDFS block’s replicas

become all unavailable. The left blue bar shows the result

given by the HDFS algorithm, and the right red bar shows

the results given by our algorithm. In leftmost bar group

results are shown on CLOS data center topologies; in the

middle, simulations assumed both CLOS and Fat Tree data

centers; in the rightmost scenario only Fat Tree topologies

were used. In general, given these topologies, it is enough to

lose about one percent of nodes in order to lose data using the

default algorithm of HDFS. When using our replica placement

algorithm, it takes about six times as many nodes to experience

data loss. It can be seen that our algorithm performed best in

the topology, where there were only CLOS data centers. This

result is due to the fact that in the CLOS topology each vertex

has a higher degree than nodes in Fat Tree data centers.

III. CONCLUSION AND FUTURE WORK

Network reliability is a classic topic in network research.

There are many research efforts dealing with this area [3]–[5].

To the best of our knowledge, no one has examined HDFS

block placement taking into account network reliability.
In the presented research we investigate the performance

degradation of big data applications once they are deployed in

a geographically distributed infrastructure. As edge computing

becomes rather the norm than the exception nowadays, the

long-researched networking aspects play an important role

when it comes to the availability or the quality of data

analysis frameworks. We showed that the default scheduling

and resource orchestration strategies of the mainstream big

data ecosystems are not prepared to cope with the challenges

the wide-area networks pose. Realizing this, we made pioneer

steps and proposed a fast topology-aware algorithm for HDFS

in order to improve block availability. We have shown in

numerical simulations that greedy heuristics yield significant

amelioration compared to the default baseline in this aspect.
We plan to extend the open source block placement solution

of HDFS with the proposed algorithm and share the code with

the respective Apache project along with the extension that

manually receives or automatically discovers the underlying

topology. The theoretical way forward is to further polish the

algorithm, particularly on the basis of feedback from the real-

world deployments’ underlying topologies.

ACKNOWLEDGMENT

This work was supported by the National Research, Devel-

opment and Innovation Office (NKFIH) under the research and

development project in Hungarian-Korean cooperation (project

identifier: 2018-2.1.17-TT-KR-2018-00012).

REFERENCES

[1] Charles C. Byers, “Architectural Imperatives for Fog Computing: Use
Cases, Requirements, and Architectural Techniques for Fog-Enabled IoT
Networks”, IEEE Communications Magazine, 2017.

[2] P. Mach et al., “Mobile Edge Computing: A Survey on Architecture and
Computation Offloading”, IEEE Communications Surveys and Tutorials,
2017.

[3] J. Meza, et al., “A Large Scale Study of Data Center Network Reliabil-
ity”, ACM IMC, 2018.

[4] C. J. Colbourn, “The Combinatorics of Network Reliability”, ”Oxford
University Press, Inc.”, 1987.

[5] I. B. Gertsbakh, et al., “Models of Network Reliability: Analysis,
Combinatorics, and Monte Carlo”, ”Boca Raton: CRC Press.”, 2012.

[6] M. Al-Fares, et al., “A scalable, commodity data center network archi-
tecture”, ACM SIGCOMM, 2008.

[7] C. Clos, “A study of non-blocking switching networks”, IEEE The Bell
System Technical Journal, 1953.

[8] S. Even, et al., “On the complexity of timetable and multi-commodity
flow problems”, SIAM Journal on Computing, 1976.

189

