Towards making big data applications
network-aware in edge-cloud systems

David Haja*T, Balazs Vass', Laszl6 Toka**
*MTA-BME Network Softwarization Research Group, TBudapest University of Technology and Economics,
fMTA-BME Information Systems Research Group

Abstract—The amount of data collected in various IT systems
has grown exponentially in the recent years. So the challenge
rises how we can process those huge datasets with the fulfillment
of strict time criteria and of effective resource consumption,
usually posed by the service consumers. This problem is not
yet resolved with the appearance of edge computing as wide-
area networking and all its well-known issues come into play
and affect the performance of the applications scheduled in a
hybrid edge-cloud infrastructure. In this paper, we present the
steps we made towards network-aware big data task scheduling
over such distributed systems. We propose different resource
orchestration algorithms for two potential challenges we identify
related to network resources of a geographically distributed
topology: decreasing end-to-end latency and effectively allocating
network bandwidth. The heuristic algorithms we propose provide
better big data application performance compared to the default
methods. We implement our solutions in our simulation environ-
ment and show the improved quality of big data applications.

Index Terms—Big data, resource orchestration, network la-
tency, bandwidth, geo-distributed network topology

I. INTRODUCTION

In the recent years two novel concepts appeared which
extends traditional cloud computing by deploying compute
resources closer to customers and end devices in terms of
network latency: edge-cloud computing [1] and mobile edge
computing [2]. These approaches, closely integrated with
carrier-networks, enable several future 5G and beyond ap-
plications and network services, such as novel Industry 4.0
use-cases, Tactile Internet, remote driving or extended reality.
This extension creates the opportunity for: i) enabling latency-
critical communication between the actors which is required
by various envisioned services; ii) customers’ devices can
offload computational tasks to this distributed environment
instead of consuming their local resources.

Data analysis is one of the most time-critical services.
Today’s resource orchestration algorithms, used for allocat-
ing system resources to big data application instances, are
usually designed for a single data center. Since latency, and
bandwidth-capacity rarely pose problems in the typically dense
data center networks, the common solutions do not take
into account the characteristics of the underlying network. In
contrast, these network aspects can easily cause application
performance degradation when the network topology contains

978-1-7281-4832-8/19/$31.00 ©2019 IEEE

edge nodes inter-connected with wide-area networking. First,
network latency worsens the end-to-end processing time in
stream analytics. Second, if bandwidth capacity is scarce,
which is usually the case in edge uplinks, data-intensive ana-
Iytic applications will suffer serious performance degradation.
We argue that these two networking aspects are important for
a big data system designer, particularly in a geographically
distributed edge-cloud scenario.

In this work, we engage in both of these problem domains
and propose various orchestration methods that can signifi-
cantly improve the system performance compared to the de-
fault scheduling baseline. Our contribution is two-fold: i) task
scheduling in map-reduce type processing frameworks, which
results in 30% lower end-to-end completion time on average
than the baseline of Spark; ii) resource orchestration that yields
more effective bandwidth utilization than what is obtained with
a default YARN (Yet Another Resource Negotiator) operation
[3]. Our general finding is that the widely used open-source big
data resource orchestrators are not yet ready for hybrid edge-
cloud deployments where the quality of wide-area networks
might leave a huge mark on the application performance. Our
work is a pioneer step towards geo-distributed network-aware
orchestration of such systems: to the best of our knowledge,
these aspects have never been investigated in relation to big
data and edge-cloud infrastructure.

The paper is organized as follows. In Sec. II we show
how we suggest to place mapper and reducer tasks in order
to decrease the network’s negative effect in the end-to-end
job completion time. As our other contribution, we provide a
bandwidth-aware resource orchestration method in Sec. III. At
the end of the paper, we present the related work in Sec. IV
and our conclusions in Sec. V.

II. DELAY-AWARE SCHEDULING OF MAPREDUCE TASKS

In this section, we show how we can speed up stream
analytics jobs containing mapper and reducer tasks by placing
task executors with the minimum possible network latency
among them. We prove that this problem is hard, and we
suggest fast heuristics to solve it, and we show how our
solution performs compared to the industry-standard baseline.

A. Execution time model with network parameters

Spark uses tasks to read and to process data in a cluster or
even across clusters. Spark relies on the location of the data,
so data locality can affect Spark applications performance.

Some of the tasks contain resource requests which specify
the servers they prefer to run on, i.e., those that contain the
data portions need to be processed. The Spark framework is
designed to ensure that these tasks will be initiated on one of
the requested servers if they have free computing resources.
Otherwise, the algorithm attempts to run the task on another
server in the same rack. If this is not possible, then the
algorithm randomly selects a server with available resources
from the entire topology to run the task. Selecting randomly a
server does not significantly affect the application performance
in a single data center environment regarding the network
delay. On the other hand, this selection policy might have a
huge impact on a geographically distributed system, where the
network latency can be high. Our proposed solution overcome
these shortcomings in a geographically distributed topology:
the purpose of our algorithm is to reduce the execution time
of streaming analytics applications in an edge-cloud system
by minimizing network delays between the components.

We model the edge-cloud topology with a graph in which
a vertex is one server, switch or gateway. The servers are
grouped into server racks which are further grouped into
clusters. We distinguish two types of clusters: data centers and
edge clusters. Each cluster contains at least one gateway node,
which provides the connection between the cluster and the
Internet. The nodes of the graph are connected by undirected
edges, which correspond to physical links. In this case, edges
are weighted with the measured average delay between their
endpoints. Servers within a cluster form a clique, and the
gateways of all clusters also form a full-mesh network. Each
server’s capacity is described by a positive integer, which
defines the number of tasks that can be placed on the server;
we assume that each task requires the same amount of compute
resource. Edge clusters have less compute resources than data
centers. An example of this topology is drawn in Fig. 1.

EDGE CLUSTER

EDGE CLUSTER EDGE CLUSTER

DATA CENTER

Fig. 1: Topology graph for the delay-aware scheduling solution

The submitted Spark jobs are also represented as graphs,
where a vertex is a task of the job and the edges show the
dependency between the tasks defined by the intermediate data
flows. The challenge here is to create an algorithm, which

places the map and reduce tasks in the topology so that the
maximum of the link delays from the location of the map tasks
to the reduce tasks’ location may be as low as possible.

Lemma 1: Minimizing the delay between map and reduce
tasks to be scheduled is an NP-complete problem.

Proof: The job graph is a complete bipartite graph where
one vertex set contains the map tasks and the other set contains
the reduce tasks. Let us create a complete graph G which
shows a logical abstraction of the topology graph. Every
vertex in G matches the nodes in the topology graph and
has a capacity value. Every edge in G represents a logical
connection between the two endpoints weighted with the
sum of delays found on the shortest path links between the
respective topology vertices. Our task is to find a subgraph in
G which is equal with the graph (G,) where the job graph
components are placed. Clearly, this problem is in NP. It is
easy to see that this subgraph is also a complete bipartite
graph as the application graph. Now let us construct subgraphs
G, from G, which contains the first x edges with the lowest
delays (z € {1,...,|E(G)|}). Deciding whether G, is part
of G, contains the following special case: deciding whether
the complete balanced bipartite graph Kj ; is a subgraph of
G, which problem is NP-complete (GT24 in [4]). A complete
bipartite graph is balanced if the two subsets of vertices have
equal cardinality. Since the set of bipartite graphs is a subset of
the general graphs, looking for a balanced complete bipartite
graph in a general graph is also NP-complete. This means that
deciding whether G, is a subgraph of G, is NP-complete (for
an arbitrary x), and thus our original minimization problem is
NP-complete, too. |

The problem is formalized as an ILP in Fig. 2. One can
easily check that the solutions of the ILP are exactly the
solutions of the depicted problem as follows. Eq. (1) assures
that as a result of the scheduling, each task is assigned to
exactly one physical node. Due to Eq. (2), the total amount of
resources required by the tasks mapped to a given node cannot
exceed the resources available at the node. The flow constraints
are given by Eq. (3). By Eq. (4) and target function (5), the
optimal d is the smallest possible value of the maximum of
the sum of the delay values on the paths from the physical
locations of the map tasks to the reduce tasks.

B. Our latency-aware task placement algorithm

We propose a heuristic algorithm to solve the hard problem
defined in Sec. II-A. The pseudocode of our proposed algo-
rithm is shown in Alg. 1. When our algorithm processes a job
scheduling request, it iterates through all the job’s tasks and
places them in the topology. First, the algorithm deploys the
map tasks examining the following cases in sequence:

e Place the map task on one of the locality constraint

servers if it has available compute resources.

o If none of the locality constraint servers have sufficient
resources, the algorithm tries to start the task on a node
with available resources in the same racks.

o If none of the racks with the locality constraint servers
have available servers, then we calculate the delays from

Notation Description VieVs: Z T, =1 Y]
Vs(Vins Vi), Es vertices and edges of the job graph, where ueVy
V,» notates the map and)
V, notates the reduce components Yu € Vit Z zhri < pu 2)
Vi, By vertices and edges of the topology graph icV,
necV; “Internet” node in topology
z, i€V, ueV; 1 if task 7 placed on vertex u
else 0 V(i,j) € Es,Yu € V4 :
yhd i (i,7) € Es, (u,v) € Ey | 11if job graph edge (4,) i i i .
' contains physical path (u,v) Z Y — Z Yolu =2y — 23, (3
else 0 vi(u—v)EV; wi(w—u)EVy
r; €N task 7’s resource requirement)
pu €N server u’s available resources V(i,j) € Es : d > Z Yei ooy O)
Ouw €N delay on physical link (u,v) (usv) € By
Xuw €N bandwidth capacity of physical link (u,v)
Bij €N bandwidth requirement on virtual link (z, 5) min d)

Fig. 2: ILP formulation for delay-optimal map-reduce placement

the constraint servers to the least utilized servers of each
cluster and select the one with the smallest delay.

Algorithm 1 Delay-aware task placement

1: for each task € request.map_tasks + request.reduce_tasks do
2 if Itask.locality_constraint then
3 for each constraint_server € locality_constraint do
4: if constraint_server.has_available_resource() then
5: task.place(constraint_server)
6: break
7. end if
8: end for
9: if —task.placed then
10: for each constraint_server € locality_constraint do
11: rack < constraint_server.rack
12: if rack.has_available_resource() then
13: task.place(rack.least_utilized_server())
14: break
15: end if
16: end for
17: end if
18: if —~task.placed then
19: min_delay + oo
20: available_servers < least_utilized_servers(Vclusters)
21: for each server € available_servers do
22: for each constraint_server € locality_constraint do
23: delay < delay(server, constraint_server)
24: if delay < min_delay then
25: min_delay + delay
26: chosen_server < server
27: end if
28: end for
29: end for
30: task.place(chosen_server)
31: end if
32: else
33: min_delay <+ oo
34: available_servers < least_utilized_servers(Vclusters)
35: for each server € available_servers do
36: delay <+ maz_delay_between_nodes(server, map_places)
37: if max_delay < min_delay then
38: min_delay + max_delay
39: chosen_server < server
40: end if
41: task.place(chosen_server)
42: end for
43: end if
44: end for

After all map tasks are placed, the algorithm schedules the
reduce tasks with the goal of placing them as close to the map
tasks as possible regarding network delay. To achieve this, first,
the least utilized servers from each cluster are listed. Then, by
iterating through this list, the maximum delay between the

actual server and all the servers where map tasks are placed
on is recorded. Finally, the server with the minimum recorded
delay is chosen to host the reduce task.

Our algorithm requires an initial phase, in which the delay
between each node pair is measured. The complexity of this
phase is O(V?) where V is the number of servers. We need
to rerun this phase only when the topology changes. The
complexity of creating a list with the least utilized servers
from each cluster is O(V'). The length of this list equals the
number of clusters in our topology, denoted by C. Let us
denote the number of the locality constraint servers belonging
to a map task with K. Finding the shortest path between two
vertices can be done with Dijkstra’s algorithm, with the worst
case performance of O(E + V log V'), where E is the number
of edges in the graph. So the complexity of deploying one map
task can be estimated with O(V + CK(E + V'1ogV))). Let
us denote the number of tasks in a job with 7". Thus the worst
case complexity of the delay-aware task placement algorithm
is O(V2+T(V +CK(E + VlogV))), which is, in case of
C,K, T<V,OV?).

C. Numerical analysis

We implemented a simulation environment, where we com-
pared our proposed algorithm with Spark’s task placement
algorithm. In the simulations we used one topology with 50
edge clusters and 5 data centers. In Table I we show the delay
values we used in our simulations.

TABLE I: Network parameters in our simulations

Link type Delay | Bandwidth
[ms] [Gbps]

server-server (in data center, the same rack) 1 100
server-server (in edge cluster, the same rack) 1 50
rack-rack (in the same cluster) 5 10
server-gateway (in the same cluster) 5 10
gateway-gateway (between two cluster) 20-200 -
data center gateway uplink - 5
edge cluster gateway uplink - I

In the simulations all jobs contained five map and two
reduce tasks. All map tasks contained three locality constraint
servers, where the task was preferred to be placed. We run
5 scenarios which differed in the locality constraints for map

tasks, i.e., locality constraint servers were randomly picked
from 1, 2, 3, 4, or all 5 edge clusters respectively. Both Spark’s
and our scheduling algorithm solution received the same set of
job requests during the simulations. We compared the achieved
delays between the map and the reduce tasks.

1.0 T
0.8} !

S1-Spark
$1-Our
S2-Spark
S2-Our
—— S83-Spark
- - 83-Our
e S4-Spark
’ §4-Our
S5-Spark
S5-Our

50 100 150 200 250
Delay (ms)

0.6}

CDF

L . i
0.4 ‘ 7

0.2

0.0
0

Fig. 3: Delay-aware simulation results

In Fig. 3 we plot the CDF of delays achieved by the
two scheduling methods in all the scenarios. On the z-
axis delay is shown in milliseconds. Our algorithm showed
better performance than Spark in all scenarios. However, the
performance of our algorithm drops with the increase of the
number of clusters that can be selected for locality constraints,
i.e., the achieved delay between the map and the reduce tasks
are increasing. This is an expected phenomenon, since the
higher number of clusters we can put our map tasks in,
the more likely will we have data flows crossing over the
inter-cluster network where links have high delay values. In
the meantime increasing the number of clusters from where
locality constraints can be picked does not have much effect on
Spark’s performance. This is because Spark does not take into
account delay, therefore randomly selecting servers to reduce
tasks is not affected by the number of locality constraints.

III. BANDWIDTH-AWARE EXECUTOR PLACEMENT FOR
SCARCE WAN CAPACITY

In this section we show that efficient bandwidth allocation
can lead to better performance in big data processing. We
reach high performance by designing our orchestration method
with edge-cloud topologies in mind. First we show that the
bandwidth-aware scheduling problem is hard, then in order to
solve the problem we propose a greedy heuristic algorithm,
finally, we compare its performance with that of YARN.

A. Bandwidth-aware executor placement problem

For many big data applications YARN deploys their execu-
tors that process data. These executors may have requirements
dictated by the location of their input. These requirements
are translated into resource requests during the scheduling
process inside the ResourceManager, the main component of
YARN. Resource requests include the following parameters:
preferred resources, number of containers per resource, local-
ity preference and priority. Since the ResourceManager has
a global view of the available infrastructure resources, it is

able to pinpoint the servers with available resources where the
individual executors can be placed. The data locality strategy
of YARN is similar to the strategy of Spark, presented in
II-A. The key of our solution lies within selecting servers with
awareness of network bandwidth capacities.

We use a similar topology graph for modeling the
bandwidth-aware executor placement problem as the one de-
scribed in Sec. II-A. There are two points in which the model
differs though: i) the weight on an edge represents the available
bandwidth between its two endpoints; ii) cluster gateways
are connected to a central vertex that represents the Internet.
We assume that a data center’s connection to the Internet
has larger bandwidth than an edge cluster’s. We model job
requests based on what they are characterized in practice: an
application has an application master that requires executors in
the big data system; among these executors some have locality
constraints. Our goal is to place executors to such servers that
the intermediate data flow among them may enjoy the highest
available bandwidth. To achieve this goal, we propose applying
a heuristic algorithm that we present in Sec. III-B.

Lemma 2: The bandwidth-aware executor placement prob-
lem (BAEP) is NP-complete.

Proof: Based on the ILP formulation of the BAEP, the
problem is in NP. To prove the NP-hardness of BAEP, we
show that it is at least as hard as the bin packing, which is
an NP-complete problem [4, SR1]. The bin packing problem
is the following. Instance: set U of items, a size s(u) for
each u € U, a positive integer bin capacity C, and a positive
integer k; Question: is there a partition of U into disjoint sets
Uy, ...,Uyg such that the sum of the sizes in U; is C or less?

Each instance of the bin packing can be transformed via
a function f into a BAEP instance the following way. Let
fU) = Vs, f(s(i € U)) = riev.. [Vi| = k with p(u) = C
for all u € Vi, 8y, = 0 and x,,, = +oo for all (u,v) € Ey,
and finally 3; ; € N7 is arbitrary for all (¢, j) € E. It can be
seen that the resulting BAEP instance has a feasible solution
exactly if the original bin packing problem instance is solvable.
Thus, the BAEP problem is NP-hard, since it is at least as hard
as the bin packing. The proof follows. [|

Similarly to the delay-aware scheduling in Sec. II, we for-
malize the problem as an ILP. The notations of our bandwidth-
aware executor placement problem can be found in Fig. 2.
Conditions (1), (2), and (3) of Sec. II are also applied here. An
extra condition is defined for our bandwidth-aware executor
placement problem, which states that the total bandwidth of
virtual links mapped to the same physical link in the WAN
network cannot be greater than the bandwidth capacity of the
link, formalized in (6). The target function of the bandwidth-
aware optimization is to minimize the allocated bandwidth in
the WAN network between all map and reduce executor pairs,
formalized in (7). The ILP for the bandwidth-aware executor
placement problem can be completed as follows:

V(u,n) € Et : Z yfjfnﬂlu S Xu,n (6)
(i.4)€Es

min :

Y YihBi ()
(,4)EES
(u,n)EE,
B. Our heuristic algorithm for executor placement

The purpose of our algorithm is to place the executors to
achieve the maximum network bandwidth for the intermediate
data flows; the pseudo-code is presented in Alg. 2.

Algorithm 2 Executor placement with bandwidth maximiza-
tion for intermediate data flows

1: for each executor € request.executors do

2 maz_bw < 0
3 if Jexecutor.locality_constraint then
4 for each constraint_server € locality_constraint do
5: if constraint_server.has_available_resource() then
6 executor.place(constraint_server)
7 break
8 end if
9 end for
10: if —executor.placed then
11: for each constraint_server € locality_constraint do
12: rack < constraint_server.rack
13: if rack.has_available_resource() then
14: executor.place(rack.least_utilized_server())
15: break
16: end if
17: end for
18: end if
19: if —executor.placed then
20: available_servers < least_utilized_servers(Vclusters)
21: for each server € available_servers do
22: for each constraint_server € locality_constraint do
23: bw + min_bw(server, constraint_server)
24: if bw > max_bw then
25: maz_bw +— bw
26: chosen_server < server
27: end if
28: end for
29: end for
30: ezecutor.place(chosen_server)
31: end if
32: else
33: reduce_executor < executor
34: available_servers < least_utilized_servers(Vclusters)
35: for each server € available_servers do
36: bw <+ min_bw(server, map_executor_hosts)
37: if bw > max_bw then
38: mazx_bw + bw
39: chosen_server < server
40: end if
41: reduce_executor.place(chosen_server)
42: end for
43: end if
44: end for

Our algorithm first deploys the application master on a
randomly selected server, then it places the executors in the
topology one by one. First, the algorithm deploys the map
executors: the map executor placement strategy is the same as
in Sec. II-B, except that if none of the racks with the locality
constraint servers have available servers, then the algorithm
calculates the available bandwidth from the constraint servers
to the least utilized servers of each cluster and selects the
server with the maximum bandwidth.

After the map executor placement, the reduce executors are
deployed. The algorithm maximizes bandwidth between map
and reduce executors. First, the least utilized servers from each
cluster are listed, then the algorithm iterates through this list
and records the minimum bandwidth between the actual server

and all the servers where map executors are placed at. Finally,
the server with the maximum calculated bandwidth is chosen
for hosting the reduce executor.

The complexity of this bandwidth-aware heuristic algorithm
is equal with the delay-aware algorithm’s complexity presented
in Sec. II-B.

C. Simulation settings and results

In order to compare our algorithm with the algorithm
used by YARN in a geographically distributed topology, we
developed our own simulator. We applied the model proposed
in Sec. III-A. We ran both YARN’s and our algorithm on the
same topology with 50 edge clusters and 5 data centers. The
bandwidth values used in the simulations are shown in Table I.

We investigated various cases where the number of map
executors in an application ranges from 2 to 8. We set the
total number of executors, i.e., map and reduce, to 10. In
terms of locality constraints, we applied the same diversity
of application examples as in the simulations presented in
Sec. II-C. After deploying an application, if it has a flow be-
tween a map and a reduce executor passing through the WAN
network, we reduce the available bandwidth of WAN links
of the respective clusters by 10Mbps. Each simulation lasted
until all the computing resources or the available bandwidth
to a cluster had been exhausted. At that point, we recorded
the number of deployed executors and the number of flows
between clusters generated by each application.

The results show that application requests processed by our
algorithm used less WAN network bandwidth for forwarding
data, so it is not surprising that we could place more executors
in the topology than YARN’s algorithm. Fig. 4 compares the
performance of YARN’s algorithm with that of our algorithm,
in terms of the number of successfully deployed executors.
Each bar group shows the results of a case with a specific
number of map executors in each application, i.e., 2, 3, etc.
In each simulation the locality constraint for map executors
were defined as a randomly picked edge cluster. The y-axis
shows the number of the placed executors at the end of the
simulations.

I Our algorithm
mmm YARN algorithm

[
o N
o o
)

Number of placed executors

2 3 4 5 6 7 8
Number of mappers

Fig. 4: WAN flow-aware executor placement simulation results

Our algorithm yielded better results than YARN in all
scenarios: it could deploy, on average, 4-times more executors

before running out of WAN bandwidth compared to YARN.
By increasing the number of map executors per application, the
performance of our algorithms drops, but after a certain point
it increases again. This is expected behavior: if all executors
are placed in different clusters, the number of WAN flows will
be equal to 2zy, where = is the number of map and y is the
number of reduce executors, because for each WAN flow we
need to decrease the available bandwidth on the uplink of the
map, and that of the downlink of the reduce executor’s cluster.
As x +y is set to 10, the maximum number of WAN flows is
reached when x = y = 5, hence the relatively low number of
successfully deployed applications at x = 5 in Fig. 4.

IV. RELATED WORK

Virtual function placement: Network delay affects the
speed of big data applications. Optimal big data deployment
can be formulated as placing virtual nodes or functions in a
physical topology by considering network resources such as
delay. VNE (Virtual Network Embedding) [5] gives a general
description of this problem. Numerous results [6]-[9] have
been proposed in recent years. However, we see that placing
executors, tasks of big data systems have not been examined
regarding network delay.

MapReduce data analysis in hybrid cloud: MapReduce
application placement solutions working in geographically
distributed environment are proposed in [10]-[13]. They show
improvement regarding the application performance in dis-
tributed, multiple data center context. The authors of these
papers suggest moving the input data for the MapReduce
applications. Moving input data can be inefficient in such an
edge-cloud topology, so our algorithms do not rearrange input
data for the data analysis applications.

Spark task scheduling in geo-distributed topologies:
Authors of [14]-[18] examine how Spark tasks can be placed
optimally in geo-distributed environments. Iridium [14] does
not consider limitations in compute and storage in the clusters.
In contrast, our solution considers computational capacities.
G. Zhang et al. in [15] excludes the network latency from
the execution time calculation. Solutions in [16]-[18] articles
calculate with the intermediate data size along with which they
define their task placement cost. In our work, we do not alter
intermediate task sizes.

Big data application scheduling in SDN compatible
data centers: In [19], [20] the authors attempt to improve
network utilization in SDN-compatible data centers. The main
difference between their research and ours is that our models
can be applied in legacy networks.

V. CONCLUSION AND FUTURE WORK

In the presented research we investigate the performance
degradation of big data applications once they are deployed in
a geographically distributed infrastructure. As edge computing
becomes rather the norm than the exception nowadays, the
long-researched networking aspects play an important role
when it comes to the quality of data analysis frameworks. We
showed that the default scheduling and resource orchestration

strategies of the mainstream big data ecosystems are not
prepared to cope with the challenges the wide-area networks
pose. Realizing this, we made pioneer steps and proposed fast
topology-aware algorithms for Spark, MapReduce, and YARN
in order to improve end-to-end job completion and bandwidth
utilization respectively. We have shown in numerical simu-
lations that greedy heuristics yield significant amelioration
compared to the default baseline in those aspects. There
is room for advancement: we plan to extend the discussed
open source resource orchestrator solutions with the proposed
algorithms and share the code with the respective Apache
projects along with the extension that manually receives or au-
tomatically discovers the underlying topology. The theoretical
way forward is to further polish the algorithms, particularly
on the basis of feedback from the real-world deployments’
underlying topologies.

ACKNOWLEDGMENT

This work was supported by the National Research, Devel-
opment and Innovation Office (NKFIH) under the research and
development project in Hungarian-Korean cooperation (project
identifier: 2018-2.1.17-TT-KR-2018-00012).

REFERENCES

[1] C. Byers, “Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled iot networks,”
IEEE Communications Magazine, 2017.

[2] P. Mach et al., “Mobile edge computing: A survey on architecture and

computation offloading,” IEEE Communications Surveys & Tutorials,

2017.

V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource nego-

tiator,” in ACM SoCC, 2013.

[4] D. Johnson et al., Computers and intractability: A guide to the theory
of NP-completeness. 'WH Freeman San Francisco, 1979.

[S] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Com-
munications Surveys & Tutorials, 2013.

[6] M. Yu et al., “Rethinking virtual network embedding: substrate support

for path splitting and migration,” ACM SIGCOMM, 2008.

N. Chowdhury et al., “Virtual network embedding with coordinated node

and link mapping,” in /[EEE INFOCOM, 2009.

[8] D. Haja et al., “How to orchestrate a distributed openstack,” in IEEE
INFOCOM, 2018.

[9] B. Németh et al., “Fast and efficient network service embedding method

with adaptive offloading to the edge,” in IEEE INFOCOM, 2018.

A. Ruiz-Alvarez et al., “Toward optimal resource provisioning for cloud

mapreduce and hybrid cloud applications,” in IEEE/ACM BDCAT, 2014.

M. Cavallo, “H2f: a hierarchical hadoop framework to process big data

in geo-distributed contexts,” 2018.

B. Heintz et al., “End-to-end optimization for geo-distributed mapre-

duce,” IEEE Transactions on Cloud Computing, 2014.

Q. Zhang et al., “Improving hadoop service provisioning in a geograph-

ically distributed cloud,” in JEEE CLOUD, 2014.

Q. Pu et al,, “Low latency geo-distributed data analytics,” ACM SIG-

COMM, 2015.

G. Zhang et al., “Improving performance for geo-distributed data process

in wide-area,” in IEEE CIT, 2017.

Z. Hu et al., “Flutter: Scheduling tasks closer to data across geo-

distributed datacenters,” in IEEE INFOCOM. IEEE, 2016.

B. Cheng et al., “Geelytics: Geo-distributed edge analytics for large

scale iot systems based on dynamic topology,” in IEEE WF-IoT, 2015.

L. .Gu et al., “A general communication cost optimization framework

for big data stream processing in geo-distributed data centers,” IEEE

Transactions on Computers, 2015.

G. Wang et al., “Programming your network at run-time for big data

applications,” in ACM HotSDN, 2012.

P. Qin ez al., “Bandwidth-aware scheduling with sdn in hadoop: A new

trend for big data,” IEEE Systems Journal, 2015.

3

—

[7

—

[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

