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Abstract Several works shed light on the vulnerability of networks against regional
failures, which are failures of multiple pieces of equipment in a geographical region
as a result of a natural or human-made disaster. This chapter overviews how this in-
formation can be added to existing network protocols through defining Shared Risk
Link Groups (SRLGs) and Probabilistic SRLGs (PSRLGs). The output of this chap-
ter can be the inputs of later chapters to design and operate the networks to enhance
the preparedness against disasters and regional failures in general. In particular, we
are focusing on the state-of-the-art algorithmic approaches for generating lists of
(P)SRLGs of the communication networks protecting different sets of disasters.

1 Introduction

The Internet is a critical infrastructure. Due to the importance of telecommunication
services, improving the preparedness of networks to regional failures is becoming
a key issue [5, 6, 9, 11, 13, 14, 10, 21, 22, 23, 28, 41]. The majority of severe
network outages happen because of a disaster (such as an earthquake, hurricane,
tsunami, tornado, etc.) taking down many or all equipment in a given geographical
area. Such failures are called regional failures. Many studies touched the problem
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of how to prepare networks to survive regional failures. The topic was started as a
subproblem in the related articles solved with simple solutions, such as assuming
that fibres in the same duct or the 50km neighbourhood of every network node is
subject to regional failure [19, 43]. Next, they were improved by examining the his-
torical data of different type of disasters (e.g. seismic hazard maps for earthquakes)
and identify the hotspots of the disasters [6, 11, 13, 21, 22, 28]. The weak point of
these approaches is that during installing a network equipment many risks are also
considered and compensated. For example, earthquake-proof infrastructure is used
in areas with larger seismic intensity. Therefore, based on historical data, it is far
not obvious to reduce the problem space, and it may be more realistic to assume
that any set of equipment physically close to each other has a higher chance to fail
together. More recent studies are purely devoted to this particular problem and adapt
combinatorial geometric based approaches to capture all of the regional failures and
represent them in a compact way [3, 8, 23, 31, 32, 34, 37]. Here the challenge is that
these regional failures can have arbitrary locations, shapes, sizes, effects, etc. This
section is devoted to overview of the state of the art and suggests unified definitions,
notions and terminology.

The output of the approaches discussed in this section can serve as the input
of the network design and management tools. Currently, network recovery mecha-
nisms are implemented to protect a small set of pre-defined failure scenarios. Each
recovery plan corresponds to the failure of some equipment. Informally speaking
when a link fails, the network has a ready-to-use plan on how to recover itself.
Technically a set of so-called Shared Risk Link Groups (SRLGs) are defined by the
network operators, where each SRLG is a set of links whose joint failure the recov-
ery mechanism should be prepared for. In this chapter, we are purely focusing on
how to define SRLGs that cover all types of disasters, and we omit the problem of
how to implement a recovery mechanism for a specific SRLG. We will also address
refinements of the SRLG model defined in the next section.

2 Notions Related to Vulnerable Regions

When several network elements may fail together as the result of some event, they
are often characterized by Shared Risk Groups (SRGs). Each SRG has a corre-
sponding failure event (or events); when such an event occurs, all elements in the
SRG fail together. Specifically, the communication network is modelled as a graph
G = 〈V,E〉, whose vertices are routers, PoPs, optical cross-connects (OXC), and
users, while the edges are communication links (mostly optical fibres). SRGs are
then defined as subgraphs 〈V ′,E ′〉, where V ′ ⊆V and E ′ ⊆ E ′.

In many cases, it is sufficient to consider only links in SRGs, and in this case,
these groups are called Shared Risk Link Groups (SRLGs). For example, an SRLG
may contain one edge (to capture single-link failures) or all edges that touch one
vertex (to capture single-node failures). In this chapter, most of the SRLGs are more
complex and represent the simultaneous failures of multiple network elements. In
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particular, we are focusing on regional failures in which all links within a specific
geographical region fail.

A set S of SRLGs can be used as an input to network design and network recov-
ery/protection mechanisms to ensure these mechanisms withstand the failures corre-
sponding to these SRLGs. For example, to ensure connectivity between two nodes,
protection mechanisms may use two edge-disjoint paths when S = {{e}|e ∈ E},
two node-disjoint paths when S = {{(u,v) ∈ E}|v ∈V}, and two paths that do not
traverse the same geographical region when S corresponds to all sets of links that
are close-by and can fail simultaneously.

The following definition captures the notion of SRLG introduced by regional
failures, such as a natural disaster or an attack. For ease of presentation, we will call
these failure events disasters, regardless of their cause.

Definition 1 (SRLG). A set of links S ⊆ E is an SRLG if we may assume there
will be a disaster that can cause all edges in S to fail together. If the disaster can be
characterized by a bounded geographical area in the two-dimensional plane D⊂R2,
and S is the set of edges that intersect with D, then S is called the regional SRLG
that represents D, and is denoted by S = SRLG(D). If D is a circular disk, we call
SRLG(D) a circular SRLG.

Circular SRLGs, which are the most common in literature, can also be charac-
terized by the failure epicenter p ∈ R2 and the failure radius r ∈ R; in this case
S = {e ∈ E|d(e, p) ≤ r}, where d(e, p) is the Euclidean distance between edge e
and point p.

Below we give two best practices for reducing the number of listed regional
SRLGs:

As the size of S determines the run-time and complexity of the mechanisms that
use it, an important goal is to keep S as small as possible. For example, when two
sets S1,S2 are in S and S1 ⊆ S2, it is sufficient to include only S2 in S ; omitting S1
from S does not affect the outcome of the underlying mechanisms. Moreover, some
works use over-approximation to reduce the size of S : instead of including two sets
S1,S2 one can include a single set S1∪S2 (this is especially appealing if S1∩S2 is of
non-negligible size); such over-approximation, however, can degrade the outcome
of the underlying mechanisms. For regional SRLG, over-approximation is achieved
by taking a larger failure region. The most common practice is to take a simpler
shape (e.g., circular disk) that completely contains the original failure region:

Assumption 1 The failed region has a circular shape.

Dealing with circular SRLGs are in fact over-approximations of regional SRLGs.
Notice for example, that one can over-approximate failures with a certain radius r,
with failures of radius r′ > r (namely, assuming all disasters cause larger damage).
If such an over-approximation is plugged into network protection mechanism (e.g.,
one that computes secondary paths that are SRLG-disjoint from the primary paths),
this will cause a performance degradation (namely, longer secondary paths).

Another very common practice is to assume that there cannot be multiple disas-
ters:
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Assumption 2 In the investigated time period, there will be at most one disaster.

The likelihood of a disaster to occur is not the same at all points of the plane.
For example, earthquakes are more likely to occur in rapture zones than in other
places, and regions with lower altitude are more likely to suffer from floods. Thus,
the probability of an event to occur is important. This probability is sometimes given
in the form of a epicenter distribution map, which gives for each location p ∈ R2,
the probability that a disaster happened with epicentre p. Moreover, the size (or
radius) of the disaster can also be a random variable (e.g., earthquakes with a larger
magnitude are less likely to happen than earthquakes with smaller magnitude, even
if their epicentres are the same). Thus, it is customary to consider a set D of disasters
D ⊆ R2 (that can be of infinite, size) and attach a probabilistic measure to this set.
For simplicity, let’s assume that D is finite, and let pD = Pr[disaster D∈D occurs]1

We note that an SRLG S can represent more than one disaster in D ; thus, we denote
by the support(S) = {D ∈D |S = SRLG(D)}.

Definitions 2-4. capture the probabilistic nature of disasters and their effect on
SRLGs. A FP (Def. 2) tells the probalility that the failed link set will be exactly S,
while a CFP (Def. 3) tells the probability that at least S will fail:

Definition 2 (FP). Given a set D of disasters D⊆ R2 and a probability pD for each
disaster in D , a Link Failure State Probability (FP) (S, pS) is a set of links S ⊆ E
and their failure probability: pS = ∑D∈support(S) pD. We note that if a disaster in
support(S) actually occurs, then all links in S fail (with probability 1).

Definition 3 (CFP). Given a set D of disasters D⊆R2 and a probability pD for each
disaster in D , a Cumulative Link Failure Probability (CFP) (S,PS) is a set of links
S ⊆ E and their failure probability: PS = ∑T⊇S ∑D∈support(T ) pD. We note that if a
disaster in

⋃
T⊇S support(T) actually occurs, then all links in S fail (with probability

1).

In a sense, FPs are like probability density functions (PDFs), while CFPs are like
their cumulative distribution functions (CDFs).

In case of two-stage PSRLGs (Def. 4), links are not necessarily destroyed if a
disaster hits them:

Definition 4 (two-stage PSRLG). Let be given 1) a set D of disasters D ⊆ R2, 2)
for each disaster in D , a probability pD of occuring, and 3) if D occurs, for each link
l ∈ SRLG(D), a probability pD,l of failing (independently of the other links). A two-
stage Probabilistic SRLG, (S, pS; p1, . . . , p|S|) is a set of links S = {l1, . . . , l|S|} ⊆ E,
the failure probability of the set: pS = ∑D∈support(S) pD, and failure probabilities
of links li: pi =

1
pS

∑D∈support(S) pD pD,li , where if a disaster in support(S) actually
occurs, then link li ∈ S fails with probability pi, independently of the other links.

1 For infinite sets, one can use discretization and consider only finite number of sets, albeit with a
small error.
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If in case of each two-stage PSRLG S, links being part of S fail with the same
probability, S is called a homogeneous two-stage PSRLG, or else it is a heteroge-
neous two-stage PSRLG.

Collectively, we call FPs, CFPs and two-stage PSRLGs as Probabilistic SRLGs
(PSRLGs). Fig. 1 depicts the connections between these notions.

CFP FP

heterog. two-stage PSRLG

homog. two-stage PSRLG

pS = PS−∑T%S pT

PS = ∑T⊇S pT

list of FPs

pi = p

p = 1

Fig. 1: Relation between Probabilistic SRLGS (PSRLGs) (two-srage PSRLGs, FPs, and CFPs):
an FPis a homogeneous two-stage PSRLG with p = 1, which is a heterogeneous two-stage PSRLG
with pi = p. In addition, a heterogeneous two-stage PSRLG can be represented by a list of FPs,
and lists CFPsand FPsare also easily interchangeable by definition.

We can convert a list of heterogeneous two-stage PSRLG into a list of FPs as fol-
lows. Take a heterogeneous PSRLG (S, pS; p1, . . . , p|S|); the probability pP of failing
exactly a nonempty set P⊆ S is pS ∏e∈P pi, thus one can store sets P with probabili-
ties pP in a list of FPs. A list of heterogenous PSRLG can be transformed similarly.

Tables 1 and 2 give an overview of the works presented in this chapter. Papers
offering lists of SRLGs and PSRLGs translate the composed geometric problem of
protecting telecommunication networks against regional failures to purely combi-
natorial and probabilistic problems, respectively2 3.

In the followings, we will present works showing that the composed geometric
problem of protecting telecommunication networks against regional failures trans-
lates to combinatorial problems via generating (P)SRLGs. Then one can use a vari-
ety of known tools to handle the translated combinatorial problems.

3 Calculating Lists of SRLGs

Beforehand we note that although many of the presented methods are designed to
handle links which are considered as line segments (or geodesics) between their
endpoints, these results can be extended to a more general setting, where the links

2 Some papers like [7, 21, 40, 42, 43] are loosely related to the regional (P)SRLG generating
problem, however our goal is presenting the most relevant works in this field.
3 A list of (P)SRLGs can be used as a pre-computed input for various problems [4, 12, 15, 18].
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Current Geometric info. Assumptions Algorithms
Paper chapter Goal Physical Planar/ Disaster Single Precise/ Poly- Paramet-

network Spherical shape disaster approximate nomial rized
Tapolcai et Sssec. SRLG list good plane circular 3 precise 3 3al. [30, 31] 3.1.3
Vass et al. Sssec. SRLG list poor plane circular 3 precise 3 3[37, 38] 3.1.2

- Sssec. SRLG list no plane - 3 precise 3 73.1.1
Vass et 3.1.4, SRLG list any plane+ bounded by

3
precise+

3 3al. [39] 3.2 shpere segments+arcs approximate
Iqbal Ssec. SRLG list good plane - 3 precise 7 7et al. [17] 3.3.1

Neumayer Sssec. most vulnerable good plane circular or
3 precise 7 7et al. [23] 3.3.2 point line segment

Pašić et Sec. SRLG list good plane any 3 approximate 3 7al. [26, 27] 5

Table 1: Papers enumerating regional SRLGs. While the rest of the papers consider
deterministic disaster scenarios, in [26, 27] SRLGs are obtained from PSRLG lists.

Paper Current Goal Correlated link failures Natural disaster /
chapter inside the disaster attack

Agarwal Subsec. most vulnerable point 7 attacket al. [2, 3] 4.2
Oostenbrink Sssec. FP list (3) -et al. [24] 4.1.1

Tapolcai Sssec. CFP list 3 natural disasteret al. [32] 4.1.2
Valentini Sssec. FP list +

3
natural disaster

et al. [36] 4.1.3 CFP list (earthquake)

Table 2: Papers enumerating regional PSRLGs

are polygonal chains (or series of geodesics) at the price of a polynomial increase in
runtime4.

3.1 Precise Polynomial Algorithms Enumerating Lists of SRLGs

In case of no geometric information:
3.1.1 SRLG Lists Induced by Hop Count

The current best practice to increase the resilience of the networks against disasters is to ensure
that the primary and backup paths assigned to a connection are node disjoint. Compared to edge-
disjointness, in this way operators ensure that the distance between the nodes of the primary and
backup paths (except at the terminal nodes) are at least 1-hop-distance from each other. The in-

4 Polygonal chains can be dismantled to a set of line segments, the method can be applied, then the
sets of line segments can be joined.
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tuitive reasoning is that a link in a backbone network is typically a few hundred kilometres long,
while natural disasters are never larger than a few hundred kilometres.

Let Mh denote the set of link sets ensuring a distance of h hops. Trivially, Mh=1 = E, i.e. it is the
set of single link failures, while protection against single node failures ensures 2 hops distance, i.e.
Mh=2 = ∪v∈V {u,v} ∈ E. To ensure an even number of hops, for every node v, Mh=2k contains the
edges of the tree of the shortest paths to v from the nodes not further from v than k hops.. Similarly,
for every link e = {u,v}, Mh=2k+1 contains the edges of the tree of the shortest paths to e from the
nodes not further from u or v than k hops. We can conclude that the number of SRLGs in Mh is low
|Mh=2k| being |V |, and |Mh=2k+1| being |E|.

Fig. 2 depicts average number of links contained by SRLGs in Mh. Clearly, this average is 1
for h = 1, and is equal for the average nodal degree for h = 2. For bigger values of h the average
seems to grow slightly superlinearly before the growth slows down to platoe at |V |−1.

2 4 6 8 10
0

10

20

30

40

h

A
vg

si
ze

in
M

h

Pan-EU
EU (Optic)

US
EU (Nobel)

N.-American
US (NFSNet)

US (ATT-L1)

US (Fibre)

US (Att-Phys)

US (Sprint-Phys)

Fig. 2: The average number of links contained in the SRLGs of Mh in case of phys-
ical backbone topologies of [25].

Clearly, Mh can be computed in low polynomial time of n. To generate Fig. 2, we generated
Mh for h ∈ {1, . . . ,12} for all the networks on the figure in less then 17 seconds on a commodity
laptop, using a code written in Python3, not optimized for speed.

In case of poor quality geometric information:
3.1.2 SRLG Lists of Disasters Being Circular Disks Containing k Nodes

As mentioned before, the current best practice is to ensure that the primary and backup paths as-
signed to a connection are node disjoint. Compared to edge-disjointness, in this way operators
ensure that the distance between the nodes of the primary and backup paths (except at the terminal
nodes) are at least 1-hop-distance from each other. The intuitive reasoning is that a link in a back-
bone network is typically a few hundred kilometres long, while natural disasters are never larger
than a few hundred kilometres. The root of the outages is usually because: I) close nodes when
two nodes are placed close to each other; for example, in highly populated areas. II) parallel links
when two links are placed close to each other because of some geographic reasons.

Unfortunately, handling the geometric information with the network topology is not part of the
current best practice. Furthermore, the Internet Service Provides usually hire the links as a service
from an independent company, called the Physical Infrastructure Provider, and thus, operators have
no information about the route of the links, or the physical coordinates of the intermediate routing
nodes.
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Fig. 3: Illustration of an apple with k = 2. Apple Au,v
k consists of specific ordered lists of links and

nodes which can be hit by a disk from C u,v
k .

In [38], a limited geometric information failure model is defined, which is based on the follow-
ing assumptions:

1. The network is a geometric graph G(V,E) embedded in a 2D plane.
2. The exact route of the conduits of the network links are not known, but contained by a polygonal

region.
3. The shape of the regional failure is assumed to be a circular disk with an arbitrary radius and

centre position.
4. It focuses on regional link k-node failures, failures that hit k nodes for k ∈ {0, |V |−2}.

[38] presents a low-polynomial algorithm for determining the set Mk of maximal regional link
k-node failures. The proposed method is based on a set of (computational) geometric considera-
tions. The key observation is that for any element of Mk there exists a circular disk-shaped disaster
having k nodes in the interior which has 1) 2 nodes on its boundary, or else 2) only 1 node u on its
boundary and having an infinite radius. This allows us to enumerate all possible maximal failures
using a sweep surface method as follows.

Let u{u,v} ⊆V be two nodes for which the set C u,v
k if circles which have k nodes in its interior

and u and v on its boundary is not empty. These {u,v} pairs are part of the set Ek of k-Delaunay
edges, and their set can be determined in low-polynomial time [29, Thm. 2.4]. In [38], data struc-

Au1,v1
k Mu1,v1

k

Ek

...
... M2

k

A
u|Ek |,v|Ek |
k M

u|Ek |,v|Ek |
k

G (V,E ),k Mk
Sw1

k Mw1
k

...
... M1

k
Swn

k Mwn
k

“apples”

“seesaws”

k-Delaunay edges

Fig. 4: Sketch of algorithm for enumerating set Mk of maximal link sets which can
be hit by a circular disk hitting k nodes.
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ture apple5 Au,v
k is defined, which contains ordered lists of links and nodes which can be hit by

a circle from C u,v
k . Suppose u and v are positioned as in 3. With the help of Au,v

k , one can sweep
through circles of C u,v

k ordered by the abscissas of their centre points allowing to collect the set
Mu,v

k of maximal hit link sets by disks from C u,v
k . Then the globally maximal elements of all lists

Mu,v
k are collected in M2

k .
In the second case, the set of maximal failures M1 from Mk for which exist a half plane going

through a node and hitting them can be calculated similarly via turning a half plane around every
node while checking the set of hit links and the number of hit nodes. Finally, Mk can be obtained
via collecting the maximal elements of M1

k and M2
k .

The process is sketched in Fig. 4. The complexity of the algorithm is low-polynomial and
squared in the number of nodes n [38, Thm. 3, Cor. 25]. Besides theoretical upper bounds, simu-
lation results show that the number of maximal failures is approximately 1.2n and 2.2n for k = 0
and k = 1, respectively (Fig. 5).
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Fig. 5: The edge density, number and size of SRLGs for each network and k =
{0, . . . ,5} in case of polygonal chain links.

5 For more details, please check [38].
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In case of good quality geometric information:
3.1.3 Circular SRLG Lists of Disasters with Radius r

If the physical positions of the network elements are known, a fast systematic approach to generate
the list Mr of maximal SRLGs that represent circular disks of a given radius r is clearly desired6.

Paper [31] presents a low-polynomial algorithm for computing Mr , when links are considered
as line segments (and the network is embedded in the plane). It shows that the number of elements
of Mr is linear in the number of nodes in the network n, and its calculation can be done in a squared
complexity of n (Theorem 6 of [31]). Simulations indicate that this list has a size of ≈ 1.2n in
practice.

To be more precise with the theoretical results, Corollary 4 and Theorem 6 of [31], respectively
tell that the number of SRLGs in Mr is at most proportional to both the number of nodes n plus
the number of link intersections x, and in the cardinality ρr of the biggest link set contained. The
computing time needed is O

(
(n+ x)2ρ5

r
)
. We note that x is 0 or a small number, and according to

simulation results, ρr increases linearly with r, suggesting an O(n2r5) runtime for r > 0.

Algorithm 1: Sketch of algorithm proposed in [31]
Input: graph G(V,E) embedded in plane, radius r
Output: List Mr of maximal SRLGs of disasters being circular disks with radius r
begin

1 M′r := /0
2 Calculate X := {points of edge crossings}
3 for w ∈V ∪X do
4 Determine Ew := {edges not further from w than 3r}
5 for e1,e2 ∈ Ew do
6 Calculate circles ci described in Fig. 6/(a)

7 for e ∈ Ew do
8 Calculate circles c j described in Fig. 6/(b) with w as point
9 Calculate circles ck described in Fig. 6/(c)

10 Refresh7Mr with link sets hit by circles ci, c j , ck (1 circle at a time)

11 return Mr

In the following, we give an overview of the proposed algorithm (Alg. 1), which relies on a
series of geometric considerations. The most important one is Theorem 1 of [31], which leverages
that the link sets possibly hit by any of the infinite number of possible disaster locations can be de-
termined via checking the effect of a quadratic number of disks on the network edges. In particular,
for a positive real r, and a nonempty set of edges H which is hit by a circular disk of radius r, there
exists a disk c of radius r which hits the edges of H such that at least one of the following holds
(see Fig. 6 for illustrations): (a) There are two non-parallel intervals in H such that c intersects both
of them in a single point. These two points are different. (b) There are two intervals in H such that

6 [19] offers a mistaken heuristic for computing Mr . It claims the disc failures having nodes of the
network as their centre point represent the worst-case of failures of radius r, which is clearly not
the case. Consider e.g. a network being an equilateral triangle with side length 3, and r = 1; here
Mr consists of a single SRLG containing all the 3 links instead of the 3 link-pairs claimed by [19].
7 This means that M′ is the set of maximal failures among which are already checked, and if f is
maximal amongst them, it is added to M′ and all f ’s subsets are eliminated from M′; or if f is not
maximal in M′, nothing happens.
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Fig. 6: The disk failures examined.

c intersects both of them in a single point. These two points are different, and one of them is an
endpoint of its interval. (c) Disk c touches the line of an interval e ∈ H at an endpoint of e.

Intuitively, there is no reason for checking for the circles described in Fig. 6 in case of two
network elements which are much further apart than the disaster radius r. Indeed, one can build up
the solution of the global problem based on some local calculations, as follows. Let X be the set of
link intersection points. After determining X , one has to collect edges not further from w than 3r
into a set Ew, for all w ∈V ∪X , then determine the maximal failures of sets Ew, and finally get the
result by collecting the maximal elements of the resulting lists.
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Fig. 7: Simulation results for determining list Mr of maximal SRLGs of disasters
being circular disks with radius r.
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With the help of some additional computational geometric ideas, for determining Mr , one could
achieve an almost linear computing complexity in the number of nodes n [30]8.

Precise representations:
3.1.4 Circular SRLG Lists of Disasters with Radius r on a Sphere

The Earth is not flat, as its shape (geoid) is much more like a sphere. With this in mind we can
deduce that when studying spread-out networks (e.g. the optic fibre network of the US), in order to
reach a higher precision, one should consider that networks are embedded on a spherical surface
instead of the much more widespread planar embedding. Note that [39] found that Ms

r and Mp
r =Mr

can be different even in the case of a network having a geographical extension of 100km.
More precisely, [38] took network AboveNet [1], and its shrunk instances, where AboveNet/c

means that AboveNet was rotated such that the average lat and lon coordinates to be both 0, then
each coordinate was divided by c. As a similarity measure, M (r) := |Mp

r4Ms
r |/(|M

p
r |+ |Ms

r |) ∈
[0,1] (the ratio of SRLGs, which are present in only one of Mp

r and Ms
r ) was used : if M (r) is

close to 1, it means the two lists are very different, while if it is close to 0, it means there are few
differences. Radius r = 8 was set to be a bit larger than the half of the diameter of the current
network, r = 0 was set to be a small radius, the rest of the r values were linearly interpolated.

Fig. 8 shows that, while in case of AboveNet, Mp
r and Ms

r are almost entirely different for
many values of r, the tendency is that M (r) decreases as the physical size of the network de-
creases, which nicely fits the intuition. Surprisingly, M (r) is not 0 for every range r even for
AboveNet/300, which equals to the case when the approximative network diameter is 104km,
AboveNet/400 (having a diameter of approx. 74km) being the most spread out instance where
Mp

r and Ms
r are the same for all investigated r ranges.

As a rule of thumb, it can be said that the difference between the planar and spherical rep-
resentation of the network can result in different SRLG lists even in case of networks having a
geographic extension as small as 100km.
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Fig. 8: The ratio of those SRLGs which are different in Mp
r and Ms

r , i.e.
|Mp

r4Ms
r |/|M

p
r ∪Ms

r |.

Regarding to calculating list Ms
r of maximal SRLGs of disasters represented as circular discs

with radius r on a sphere, basically the same ideas could be repeated on the sphere as we have
seen earlier. While considering a more general model, where links of networks are represented
as polygonal chains consisting of at most γ line segments between their endpoints (where γ is
a parameter), paper [39] presents an approach similar to the one seen in Subsubsec. 3.1.3 for
determining Ms

r . However, as it only aims to present that ’planar’ approaches can be repeated on

8 Under certain conditions, the complexity of [30] is optimal.
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the sphere, it provides a moderately sophisticated algorithm and complexity bound on determining
Ms

r . For the sake of complexity analyis, an additional parameter λ is defined, which is the maximal
length of the list of suspected maximal failures M while collecting the maximal failures.

According to Cor. 9 of [39], if both x and λ is O(n), and γ is bounded by a constant, the list of
maximal link sets which can be hit by a circular disk on the sphere Ms

r can be computed in O(n4ρr).
Simulation results show that ρr is proportional to 2r

diam in the interval (0,diam/2], where diam is
the geometric diameter of the network. This means an O(n4 r

diam ) total running time in practice.

3.2 Approximate Polynomial Algorithms Listing SRLGs

We could see in Subsubsec. 3.1.3 a part of the sophisticated theory and relatively complex algo-
rithms which have to be built in order to be able to provide an algorithm for determining just a
single kind of regional SRLG list. This raises the question if one could approach the problem bet-
ter, or at least more general. As we will see in this Subsection, the answer is yes. In a sense, one
of the aims of paper [39] is to show that while there is a struggle for fast algorithms determining
basically any kind of SRLG list precisely, with relatively low effort one can design discretized
approaches which can make small mistakes, but which might be permissible given the uncertainty
in the failure modelling and the network data. We note that in [38], links are represented as polyg-
onal chains (or chains of geodesics) between their endpoints, allowing to represent real topologies
accurately.

For a point P (in the plane or on the sphere) and node v ∈ V , let the node-distance couple be
[v,d(v,P)], where d(v,P) is the distance of v to P. Let v(P) be the list of node-distance pairs of
all nodes v ∈ V . We define e(P) to be the list of edge-distance pairs defined similarly. It can be
proved that for a given point P, v(P) can be computed in O(n), and e(P) in O(n+ x) (where x is
the number of edge crossings).

The plan is to determine these lists for enough points which are also placed well enough to be
able to determine the maximal SRLG lists based on these node-distance and edge-distance lists.
Let P denote the set of points P for which we want to construct v(P) and e(P).

Let us restrict ourselves to planar geometry for a moment. Intuitively, we can calculate Mr by
including the grid points of a sufficiently fine grid (let’s say containing 1 km × 1 km squares) in
P . On a sphere, we should choose a similar nice covering.

Algorithm 2 is an example discretized algorithm for determining Mg
r (where ’g’ stands for

geometry type, Mg
r being Mr or Ms

r , if the geometrical representation is planar or spherical, respec-
tively) for circular disks, which has a complexity of O(|P|n r

diam ) under some practical assump-
tions, and it has a low-polynomial complexity indifferent of the nature of the problem input [39,
Thm. 11, Cor. 13]. We can see that although Alg. 2 is much simpler to implement, it is competitive
with much more complex precise Alg. 1 in terms of asymptotical runtime.

Regarding to its accuarcy, 1) let dP be the maximal distance of any geometric location from
the (closed) convex hull of the geometric embedding of graph G to the closest point of set P , i.e.
dP := maxt∈conv(G) minp∈P dist(p, t), and 2) let us denote the relationship of two (link) sets E1
and E2 by E1 w E2 if and only if for all e2 ∈ E2 there exists an e1 ∈ E1, such that e1 ⊇ e2. Using
these notations, Mg

r w Hg
r w Mg

r−dP
, where Hg

r is the output of Alg. 2 [38, Thm. 11]. Based on
this, if one wants to protect disasters caused by disks with radius r, it is only needed to run Alg.
2 initializing the radius as r + dP . Furthermore, by choosing P such that dP to be small, one
can avoid enumerating overprotective SRLGs, more precisely, limdP→0 Hg

r = Mg
r , for any fixed

network.

9 Similarly to the precise algorithms, this means that Mg
r is the set of maximal failures among which

are already checked, and if e(P)hit is maximal amongst them, it is added to Mg
r and all e(P)hit’s

subsets are eliminated from Mg
r ; or if e(P)hit is not maximal in M′, nothing happens.
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Algorithm 2: Approximate algorithm for determining the maximal r-range
SRLG lists

Input: G (V,E ), r, P , geometry type g, coordinates of nodes and polylines of edges
Output: Mg

r
begin

1 for P ∈P do
2 determine e(P)hit
3 if e(P)hit 6= /0 then
4 refresh9Mg

r with e(P)hit

5 return Mg
r

Regarding non-circular SRLGS, engineering fast precise algorithms for determining SRLG lists
for arbitrary disaster shape instead of a circle is not trivial10, but approximate algorithms similar to
the one described for determining Mg

r can be easily designed. In short, while the disk is invariant to
rotation, the only additional hardness here is that the different orientations of the fixed shape should
be also considered. In other words, one should check the links hit by the shape at every centre point
and every orientation. Discretizing the possible orientations of the shape can be handled just as
discretizing the places of centre points. Based on this idea, [39, Alg. 4.] approximately calculates
the list Mshape of maximal failures which can be caused by a disaster shape in O(a|P|n r

diam )
under some practical assumptions, where a is the number of orientations of the shape which are
considered. Its complexity is low-polynomial indifferent of the problem input, and, in limit, the
output is precisely Mshape, both in the plane and on the sphere [39, Thm. 15, Cor. 17].

3.3 More SRLG Determining Approaches

Almost circular SRLGs:
3.3.1 SRLGs of Spatially-Close Fibers

F. Iqbal et al. [17] proposed to call a pair of fibre spatially-close if their distance is at most r′, i.e.
they can be covered with a circular disk of radius r′

2 . They propose to define SRLG as a set of
fibres where any pair of fibres are spatially-close, in other words, any pair of fibres can be covered
with a circular disk of radius r′

2 , see Fig. 9 as an example of the two SRLG models. The intuition is
that r′ is a smaller parameter than r, representing those fibres that are close together have a higher
probability of failing simultaneously due to regional failures. The high-level idea is to provide an
approach that generates SRLGs, not considering failure shapes, but simply considers a threshold
r′: any fibre pairs with a separation distance smaller or equal to r′ are considered spatially close.

In [17], three spatially-close fibre problems are considered: (1) finding all pairs of spatially-
close fibre segments, (2) finding all spatially-close intervals of fibre to a set of other fibres, and (3)
grouping spatially-close fibres into SRLGs.

Fibres are modelled as non-straight concatenations of fibre segments of irregular lengths. Each
of these fibre segments is a straight line connecting two fibre-points of known geodetic coordinates
(latitude and longitude). For easier calculations, the coordinates are projected to two-dimensional
Cartesian coordinates, embedding the fibres into the 2-D plane.

10 [35] tackles a similar problem.
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(a) There are 3 SRLGs each are a pair of links. (b) There is a single SRLG with three links

Fig. 9: Example of SRLG according to (a) Def. 1, and (b) Sec. 3.3.1.

Problem 1 (Detection of Spatially-Close Fiber Segments (DSCFS) [17]). Given a set E of fibers
and a distance r′. Each fiber e ∈ E is associated with a set Te of Te fiber segments. Each fiber
segment t ∈Te is associated with two fiber points (ut1,vt1) and (ut2,vt2).

Find all fibre segment pairs of different fibres that have a minimum separation distance of at
most r′.

Clearly, the DSCFS problem is solvable in polynomial time, as the naive approach (computing
the separation distance of all fibre segments) has a time complexity of O(|E|2T 2), where T is the
maximum number of fibre segments per fibre. In practice, the runtime can be reduced significantly
by first storing each segment in an R-tree11 [17].

The probability that two spatially-close fibres fail simultaneously depends on the length of the
interval(s) of the fibres that are close together.

Problem 2 (Intervals to a Set of Spatially-Close Fibers (ISSCF) Problem [17]). Given a fiber ei,
a set Y of Y fibers, and a distance r′. Each fiber ei or e j ∈ Y is associated with a set Ti/T j of
Ti/Tj fiber segments. Each fiber segment t ∈ Ti/T j is associated with two fiber points (ut1,vt1)
and (ut2,vt2).

Find the intervals of fiber ei that have a minimum separation distance of at most r′ to any fiber
e j ∈ Y .

This problem can be solved in O(Y T 2) time, where T is the maximum number of fibre segments
per fibre, by first finding all fibre segments of Y that are spatially-close to ei and then computing
the spatially-close intervals to these segments by solving sets of quadratic equations (see Alg. 3 in
[17]).

Finally, if a set of fibres are grouped into an SRLG if every pair of fibres are spatially-close to
each other:

Problem 3 (Grouping of Spatially-Close Fibers (GSCF) Problem [17]). Given a set F of F
spatially-close fibre pairs. Group all fibres that are spatially close to each other, such that the
number of distinct SRLGs is minimized.

In other words, we want to find all maximal SRLGs, where a maximal SRLG is a set of fibres that
are spatially close to every other fibre in the set, and which is not a subset of any other SRLG.

In [17] a heuristic algorithm was given that first transforms it to the Maximal Clique Enumer-
ation (MCE) problem. Second, a variant of the Bron-Kerbosch algorithm [33] to find all maximal
cliques is used to find all maximal SRLGs. Note that MCE is an NP-hard problem in general.

11 An R-tree is an efficient tree data-structure for storing spatial objects. Objects are grouped based
on their minimum bounding rectangle.
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3.3.2 A Single Worst SRLG in case of a Fixed Disaster Shape and Metric

[23] presents three flavors of problems for finding a most vulnerable place of the network in case of
multiple network vulnerability measures12. The first problem assumes that the network is bipartite
in the topological and geographic sense and that the cuts are vertical line segments. In the latter
two problems network, links can be in almost arbitrary locations on the plane. In one of the prob-
lems, the disaster shapes are line segments in any direction. In the other, the disasters are circular
disks with a given range. To solve the problem instances, in [23], both MILP formulations and
polynomial algorithms are given.

We note that in the natural condition when, for any link set E1 ⊆ E2, the failure of E2 is worse
than the failure of E1 according to the vulnerability measure, the worst SRLG will be part of the
set of exclusion-wise SRLGs generated by disaster shape F , which can be determined techniques
depicted in Subsec. 3.1 and 3.2. Thus the worst case cut can be found via calculating the measure
value to all the maximal SRLGs.

4 Algorithms Determining Lists of PSRLGs

4.1 Computing Lists of FPs and CFPs

4.1.1 Computing FPs From Disaster Sets

Most algorithms for analyzing the vulnerability of networks to disasters, or for creating regional
SLRG or FP lists, assume the regional failure takes a fixed shape everywhere in the network area. In
reality, the affected region greatly depends on the properties of the disaster, as well as those of the
surrounding area. For example, the region affected by an earthquake depends on the earthquake’s
magnitude, as well as the properties of the rocks and sediments that the earthquake waves travel
through. Thus, it makes sense to base SLRG groups on a variety of possible failure shapes.

J. Oostenbrink and F. Kuipers [24] proposed computing the vulnerability of a network to a set
of representative disasters D (each of any shape), instead of to a fixed disaster shape. Each disaster
D ∈D is assigned a disaster area D⊆ R2, and an occurrence probability pD. As the probability of
simultaneous disasters is low (ignoring strongly correlated events such as aftershocks, which can
be combined into a single composite disaster), it is assumed exactly one disaster will occur, i.e.
∑D∈D pD = 1. Furthermore, it is assumed that if disaster D occurs, all links intersecting its disaster
area will fail. A disaster D can take any shape and does not have to be connected, as long as it is
possible to compute if a line segment intersects it.

A representative disaster set D can be obtained in a variety of ways, preferably in collaboration
with experts (e.g. seismologists). For example, one can use a tool to randomly generate sets of
possible disasters, use the last N historical disasters, or construct a set of custom disaster-scenarios.
The concept of a set of representative disasters is similar to that of the Stochastic Event Set used
in Cat-modeling, for which a large number of models exist. In all cases, it is necessary to convert
hazard intensity values such as ground motions to a binary area D using some threshold function.
In [24], J. Oostenbrink and F. Kuipers give an example of converting earthquake scenarios to a
disaster set D .

12 The investigated measures are: 1) the total expected capacity of the intersected links, 2) the
fraction of pairs of nodes that remain connected, 3) the maximum flow between a given pair of
nodes, 4) the average value of maximum flow between all pairs of nodes.
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Note that if the disaster locations and shapes are both finite discrete random values (e.g. a
division of the plane into grid points), we can generate a finite disaster set D of all possible disasters
by simply adding each possible combination of disaster location and shape to D .

Let a failure state s be defined as a set s ⊆ E, where e ∈ s if and only if e has failed. Now, the
failure set S(D) of links that are affected by disaster D is the set of links that intersect D. Note that
this definition of S(D) is equivalent to that of a regional SLRG, SRLG(D).

Let S be the random value indicating the failure state after the disaster. Given a disaster set D ,
we can obtain the distribution of S as follows [24]:

1. ∀D ∈D , compute S(D)
2. ∀s ∈ S[D ] (the image of S), store

S−1(s) = {D ∈D |S(D) = s}
3. ∀s ∈ S, P(S = s) = ∑

D∈S−1(s)
pD.

We now have each possible failures state, as well at its occurrence probability. That is, we have the
complete list of FPs, based on the disaster set D .

4.1.2 Calculating Lists of CFPs Based on Correlated Link Failures

A study dealing with the probabilities of correlated link failures is [32], which models the regional
failures as having a random epicentre, and a random size (described with a size parameter s in
[0,1]). Two assumptions are made: 1) in the investigated time period there is at most one disaster
and 2) for every possible failure epicentre and failure sizes s1 < s2 the region destroyed by disaster
with size s1 is totally contained by the region hit by the one with size s2.

Fig. 10 briefly depicts the model. It shows an example network and the corresponding fail-
ure probabilities. Suppose we need to establish a high-availability connection from the top node
through the working path of link b and protection path a− e. The unavailability of the working
path can be computed as P(b) = 0.0055, and for the protection path it is P(a)+P(e)−P(a,e) =
0.00986. In the traditional approach, the two paths are assumed to fail independently; thus, the total
connection availability is estimated as 1−0.0055 ·0.00986 = 0.999945, i.e. four nines. However,
considering the joint failure probabilities of the links (provided in the example), the total con-
nection availability should be 1−P(a,b)−P(b,e)+P(a,b,e) = 0.9987, i.e. not even three nines,
which is a significant difference.

Now an implementation strategy follows which uses discrete functions instead of continuous
ones.

We discretize the problem by defining a sufficiently fine resolution, say 1 km, and place a grid
of 1 km × 1 km squares over the plane to assume that the disaster regions r(p,s) and hit link sets
R(p,s) are “almost identical”13 for every p inside each grid cell c. This way the whole integration
problem translates to a summation. We will define the inputs over the grid, and consider R2 as a
Cartesian coordinate system. We will define r(p,s) over the Cartesian coordinate system so that
for each c we will define an s value for the neighbouring c.

Let r denote the absolute maximum range of a disaster in km.
Let (xmin,ymin) be the bottom left corner and (xmax,ymax) the top right corner of a rectangular

area in which the network lies. It is sufficient to process each c in the rectangle of bottom left
corner (xmin− r,ymin− r) and top right corner (xmax + r,ymax + r), and we denote by ci, j the grid
cell in the i-th column and j-th row. In this range, for each ci, j , we will consider the probability hi, j
of the next disaster having epicenter p in the cell ci, j , i.e. hi, j =

∫
p∈ci, j

h(p)dp.
The query time of sets can be reduced to a constant with very high probability (with the help

of hashing) if we store all CFPs.

13 In particular, we may assume that f (e, p) is independent of p as long as it is in c. We denote this
common value by f (e,c).
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Input:

100km

a b

cd

e

f

Network:
Failure model: Type: tornado earthquake EMP . . .
Model parameters:
pd : the probability of a disaster of type d in the given area and time period;
h(p): quantitative hazard map of the area, that is the probability density function of the
location of the disaster epicenter (e.g. uniform distribution on a bounded area on R2);
r(p,s): the shape function of the disaster depending on epicenter p and size s returning
the damaged zone of the disaster (e.g. a circular disk centered on p with radius s);
Regional failure model:
Hazard epicenter: random variable on R2 with probability density h().
Relative size: random variable uniform distribution on [0,1]. Each link fails having a
point in the disaster area defined by shape function r(), the rest remain intact.

×r(p,1)

Output:
P(a) =.0055 P(b) =.0055 P(c) =.005 P(d) =.005 P(e) =.005 P( f ) =.005

P(a,b) =.00068 P(b,e) =.00064 P(a,e) =.00064 P(c,e) =.00056

P(d,e) =.00056 P(d, f ) =.00056 P(c, f ) =.00056 P(c,b) =.00052

P(a,d) =.00052 P(a,e,d) =.00031 P(b,e,c) =.00031 P(a,b,e) =0

Fig. 10: An illustration of the CFP problem inputs and outputs.

Using self-balancing binary trees, its worst-case query time is always O(ρ log((n+ x)ρ)).
To build up the list of CFPs, we use an associative array J , which can be addressed by an

(unordered) set of links {e1,e2, . . . ,ek} and returns its joint probability value. In this case, in the
pre-computation process, we have to extract the contribution of ci, j to the failure probability of
every subset S of links. We do this by working with the list Si, j = (e1,e2, . . . ,ek), and incre-
ment the J values accordingly, i.e. J [{e1}]+ = hi, j · f (e1,ci, j), J [{e2}]+ = hi, j · f (e2,ci, j),
J [{e1,e2}]+ = hi, j · f (e2,ci, j), etc.

For the probability pS of failing exactly the set S of links, we need to look up S in J . If not
found, then PS = 0.

The drawback of the CFP list is that it has an Ω(2ρ ) space complexity, which makes it ineffi-
cient for bigger network densities. With this in mind, one can build up also a list of FPs representing
the same disasters, which will be significantly shorter, but some precomputations will be needed
to determine PS.

4.1.3 CFPs and FPs from Historical Earthquake Data

Intuitively, the models presented in Subsubsec. 4.1.1 and 4.1.2 are related. In fact, both models
could be used for computing lists of FPs and CFPs. In [36], an approach for determining the list of
CFPs and FPs based on the available historical Earthquake data is presented. This approach can be
viewed as a special case of both models presented in Subsubsec. 4.1.1 and 4.1.2.

Namely, the next possible earthquake has a random epicentre taken from a set of grid points
over the evaluated area, and the disaster area has also a random range (which is a function of the
earthquake moment magnitude) taken from a discretized scale. This results in a set of possible
disaster scenarios with some probabilities as in Subsubsec. 4.1.1, and also can be viewed as a
discrete version of model in Subsubsec. 4.1.2.
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4.2 Probabilistic Modelling of the Worst Place of a Disaster

Similarly to [23] (in Subsubsec. 3.3.2), [3] aims to find the single worst place of a disaster under a
certain metric. However, while the first models the disaster effect to be deterministic (every network
element which has an intersection with the disaster area fails with probability 1), in the latter every
link has a probability ∈ [0,1] of failing in case of each disaster place. However, an incompleteness
of the paper is that, in case of a fixed disaster, it considers that the affected links fail independently
of each other.

To be more precise, the model of [3] is the following. They define a failure probability distri-
bution function f : Q×R2→ R≥ 0. Given a disaster location P ∈ R2 and q ∈ Q, f (q, p) = fq(p)
is the probability that q is affected by the disaster at p. For a compound component π composed
of a sequence of simple components q1, . . . ,qr , the probability of being damaged by a disaster at a
location p is denoted as fπ (p) and being defined to be the probability that at least one of its simple
component if damaged, i.e., fπ (p) = 1−∏q∈π (1− fq(p)).

For finding the most vulnerable point according to various metrics (expected component dam-
age, average two-terminal availability, and expected maximum post-attack flow), [3] presents Las
Vegas and Monte Carlo algorithms. It also offers approximate solutions to the problem of find-
ing the worst arrangement of k simulaneous disasters (attacks), which is a generalization of the
NP-hard maximum set cover problem[16].

4.3 On Two-Stage PSRLGs and Denomination Issues

The first paper considering probabilistic SRLGs was [20]. There the structure which in this chapter
is called ’two-stage PSRLG’ is named simply as ’Probabilistic SRLG’ (PSRLG). Since we felt that
FPs and CFPs deserve to be called probabilistic SRLGs at least as much as the structure defined in
[20], we decided to call these three structures collectively as PSRLGs, and name the [20]-PSRLG
as ’two-stage PSRLG’.

Due to this historical reason, we believe it worth presenting its model even though it does not
tackle the question of calculating PSRLGs (it only uses PSRLGs as inputs for a diverse routing
problem). [20] defines the two-stage PSRLGs as follows. There is a set R of SRLG events that can
incur link failures. Each SRLG event r ∈ R occurs with probability πr , and once an SRLG event r
occurs, link (i, j) will fail with probability pr

i, j ∈ [0,1]. Link (i, j) is part of the resulting (two-stage)
PSRLG if pr

i, j > 0. This definition from [20] is slightly generalized in Def. 4 while keeping the
form of the data structure.

As Fig. 1 also suggests, using lists of two-stage PSRLGs one could store the same information
more compactly as in lists of FPs or CFPs. However, there are numerous open questions related to
this field, as to the best of our knowledge, no paper investigated how to enumerate in an efficient
way lists of two-stage PSRLGs.

5 SRLG Lists Obtained from PSRLG Lists

It is a natural idea to list the (maximal) link sets which have a probability of failing together
higher than a given threshold T (like in [27]). Obviously, for this, as an intermediate step, one
has to generate a set of probabilistic SRLGs. More precisely, CFP is the most useful structure
in this context, since, by definition, for a link set S, the Cumulative Failure Probability PS is the
probability that at least the links of S will fail. The advantage of this approach is that SRLG lists
can be generated based on sophisticated objectives. Alg. 3 sketches this framework.
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Algorithm 3: SRLG list obtained from CFP list
Input: graph G(V,E), threshold T ∈ [0,1], CFP model C (e.g. as in one of [24, 26, 27, 32]),

additional parameters needed for C
Output: List MT of maximal link sets having a CFP at least T

1 Calculate list L of CFPs according to C
2 Collect CFPs of L with probability ≥ T in list FT
3 return list MT of maximal elements of FT

As a concrete example, [27] modifies the CFP enumerating model presented in [32] (and Sub-
subsec. 4.1.2) in order to take in count also the availabilities of the links. Compared to [32], a
link e with low availability makes CFPs it is involved in to have higher probabilities, while re-
liable links decrease these probabilities. Fig. 11 shows the cardinality of |MT | and avg. length of
SRLGs in MT in function of threshold T and maximal disaster area R in case of backbone topology
16 optic pan eu[25]. Note that the unit of R is not a km, as the Euclidean distances are altered
during the CFP enumerating process in function of the availabilities.

The first observation made in Fig. 11 is that a radius R≥80 (which roughly corresponds to the
20% of the network diameter) or larger combined with a threshold T≤0.001 yields a high number
of maximal probable failures. This translates to the fact that a bigger disaster possibly hits a larger
number of edges, and the failures above the small threshold cannot be dominated by only a few sets

(a) |MT | (b) Average SRLG length in MT

Fig. 11: Cardinality of |MT | and avg. length of SRLGs in MT in function of T and
R in case of backbone topology 16 optic pan eu [25]
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from MT . Of course, in a non-practical extreme case of R being greater than half of the network
diameter, it is possible that MT = {E}, meaning |MT |= 1.

Further observations of [27] are that: (i) if R∈ [0,80], MT is likely to contain only a handful
of most probable SRLGs; (ii) similar R ·T value indicates similar cardinality of MT . Hence, for
reasonable disaster sizes, MT has a manageable size, with its cardinality being comparable with
the number of network elements. In addition, one can observe that the average size of the SRLGs
scales with the disaster radius.

6 Conclusion

In this chapter, we overviewed the state of the art algorithms for enumerating regional Shared
Risk Link Groups (SRLGs) and regional Probabilistic SRLGs (PSRLGs), which structures are key
in translating the composed geometric problem of protecting telecommunication networks against
regional failures to purely combinatorial and probabilistic problems, respectively. We showed that
the best technique to choose for enumerating the vulnerable regions varies on 1) the available
geometric information on the network topology, 2) (probabilistic) information on the effects of
possible disasters in the network area, and 3) the desired output structure (SRLG/PSRLG). In the
chapter, first we presented a range of deterministic approaches for enumerating maximal regional
SRLGs under various conditions. Then, for regional PSRLG enumeration, we visited some models,
which are easily tunable to the available knowledge on the network topology and the disasters.
Lastly, as an advanced technique, we described an SRLG enumerating approach, which uses a
probabilistic model in an intermediate step.
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37. Vass, B., Bérczi-Kovács, E., Tapolcai, J.: Enumerating shared risk link groups of circular disk
failures hitting k nodes. In: Proc. International Workshop on Design Of Reliable Communi-
cation Networks (DRCN). Munich, Germany (2017)
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