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1 Introduction

The Internet is a critical infrastructure. Due to the importance of telecommunication services, improving
the preparedness of networks to regional failures is becoming a key issue [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
The majority of severe network outages happen because of a disaster (such as an earthquake, hurricane,
tsunami, tornado, etc.) taking down a lot of (or all) equipment in a given geographical area. Such failures
are called regional failures. Many studies have touched the problem of how to prepare networks to survive
regional failures, where the first solutions have assumed that fibres in the same duct or within 50 km
of every network node fail simultaneously (namely, in a single regional failure) [13, 14]. These solutions
were further improved by examining the historical data of different type of disasters (e.g., seismic hazard
maps for earthquakes) and identifying the hotspots of the disasters [2, 5, 6, 8, 9, 11]. The weak point of
these approaches is that, during network equipment deployment, many of the risks are considered and
compensated (e.g., an earthquake-proof infrastructure in areas with larger seismic intensity), implying
that the historical data does not represent the current deployments, and therefore, not the current risks.
Thus, it may be more realistic to assume that any physically close-by equipment has a higher chance to
fail simultaneously. More recent studies (including those forming the base of my Ph.D. theses) are purely
devoted to this particular problem and adapt combinatorial geometric based approaches to capture all
of the regional failures and represent them in a compact way [15, 16, 10, 17, C8, C9, C10], where the
major challenge is that regional failures can have arbitrary locations, shapes, sizes, effects, etc. This
collection of Ph.D. theses presents parts of the state of the art and suggests unified definitions, notions
and terminology. For a more comprehensive survey, I kindly refer the reader to our book chapter [B1].

The output of the approaches discussed in the followings can serve as the input of the network design
and management tools. Currently, network recovery mechanisms are implemented to protect a small
set of pre-defined failure scenarios. Each recovery plan corresponds to the failure of some equipment.
Informally speaking, when a link fails, the network has a ready-to-use plan on how to recover itself.
Technically, a set of so-called Shared Risk Link Groups (SRLGs) are defined by the network operators,
where each SRLG is a set of links whose joint failure the recovery mechanism should be prepared for.
Service availability queries on the other hand require probabilistic refinements of the SRLG model, called
collectively as Probabilistic SRLGs (PSRLGs). More concretely, to evaluate the availability of network
services, besides knowing the disaster frequencies, for every set S of links of the network, we need to
store the probability that exactly/at least the links of S will fail simultaneously during the next disaster.

During my Ph.D. studies, I was purely focusing on how to define and enumerate succinct lists of
SRLGs that cover all types of disasters. I have also addressed the issue of determining PSRLG lists that
capture the correlated nature of link failures caused by a disaster and have tractable sizes.

2 Research objectives

The objective of this dissertation is creating the missing models and related algorithms translating the
composed geometric problem of protecting telecommunication networks against regional failures to purely
combinatorial and probabilistic problems, respectively. This translation has to provide a (probabilistic)
list of possible failures as its output. The best technique to choose for enumerating the vulnerable
regions of a network varies on (1) the available geometric information on the network topology, (2)
(probabilistic) information on the effects of possible disasters in the network area, and (3) the desired
output structure (SRLG/PSRLG). Clearly, there are some cases, when it is trivial what we can do
as best as this translation. For example, when we have absolutely no information on the geographical
embedding of our network topology, the best we can do as an enumeration of vulnerable regions is to
list the k = 1, 2, . . . neighbourhoods of each network node or link as lists of SRLGs (cf. [B1]/1.3.2A). In
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contrast to these cases, this dissertation tackles some non-trivial real-life problem versions discussed in
the followings.

Theses 1 and 2 aim creating models and related algorithms providing succinct lists of SRLGs that
cover all disasters in case of two different setting of quality of input data. In the first part of the
dissertation (Thesis 1) it is assumed that (1) we have a precise knowledge on the geographical embedding
of the network, but (2) only a maximum destruction radius is known about the nature of future disasters,
and based on these information, (3) we want SRLG lists as output. My main goal here was to provide
theoretical upper bounds on the number and computation time of SRLGs.

In Thesis 2 one is given only a schematic map of the network (what happens e.g., when the Internet
Sevice Provider rents parts of its network from a Physical Infrastructure Provider), and wants a set of
regional SRLGs. In this part of my dissertation the objective is creating a model which can handle this
’blury’ representation of the topology, and provides a succinct list of SRLGs in polynomial time. I wanted
to provide both theoretical and practical evaluations of this model.

In the last part of my dissertation (3), I desired to provide realistic PSRLGs. To be able to provide
realistic PSRLGs, one needs (1) a precise geometric representation of the network, (2) detailed knowledge
on the possible future disaster events, and lastly, a model representing these informations as precise yet
succint lists of PSRLGs. In Thesis 3, I wanted to design a) standard PSRLG data structures, b) a
state-of-the-art probabilistic failure model, and finally, c) an extensive evaluation of the model based on
real-world network topology and disaster data.

3 Methodology

While modelling and elaboration of algorithms, I extensively used the tools of combinatorial optimisation
and geometry. My results mainly rely on graph theory, computational geometry, complexity theory, and
probability theory. While my results are primarily analytical, in some cases, the complexity of the problem
demanded the extensive usage of simulation tools.

I implemented my proposed methods in Python 3.5, then I verified their effectiveness and pertinence
through simulations.

4 New Results

When several network elements may fail together as a result of a single event, they are often characterized
by Shared Risk Groups (SRGs). Each SRG has a corresponding failure event (or events); when such an
event occurs, all elements in the SRG fail together. Specifically, the communication network is modelled
as a graph G = (V, E), whose vertices are routers, PoPs1, optical cross-connects (OXC), and users, while
the edges are communication links (mostly optical fibres). SRGs are then defined as subgraphs 〈V ′, E′〉,
where V ′ ⊆ V and E′ ⊆ E′.

In many cases, it is sufficient to consider only links in SRGs, and in this case, these groups are called
Shared Risk Link Groups (SRLGs). For example, an SRLG may contain one edge (to capture a single-link
failure) or all edges that touch one vertex (to capture a single-node failure). SRLGs may be more complex
and represent simultaneous failures of multiple network elements. In particular, in this dissertation, we
focus on geographically-correlated failures in which links within a specific region fail together.

A set S of SRLGs can be used as an input to network design and network recovery/protection mech-
anisms to ensure these mechanisms withstand the failures corresponding to these SRLGs. For example,

1A point of presence (PoP) is an artificial demarcation point or interface point between communicating entities.
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to ensure connectivity between a specific pair of nodes, protection mechanisms may construct two edge-
disjoint paths when S = {{e}|e ∈ E}, two node-disjoint paths when S = {{(u, v) ∈ E}|v ∈ V }, or two
paths that do not traverse the same geographical region when S corresponds to all sets of links that are
physically close-by.

The following definition captures the notion of SRLG introduced by regional failures, such as a natural
disaster or an attack. For ease of presentation, we will call these failure events disasters, regardless of
their cause.

Definition 4.1 (SRLG) A set of links S ⊆ E is an SRLG if we may assume there will be a disaster
that can cause all edges in S to fail together. If the disaster can be characterized by a bounded geographical
area in the two-dimensional plane D ⊂ R2, and S is the set of edges that intersect with D, then S is
called the regional SRLG that represents D, and is denoted by S = SRLG(D). If D is a circular disk,
we call SRLG(D) a circular SRLG.

Circular SRLGs, which are the most common in literature, can also be characterized by the failure
epicentre p ∈ R2 and the failure radius r ∈ R. In this case S = {e ∈ E|d(e, p) ≤ r}, where d(e, p) is the
Euclidean distance between edge e and point p.

4.1 Maximal SRLGs Induced by Disks with Radius r

Thesis 1 [C6, C9, J2, J4] I proposed polynomial algorithms for enumerating listsMp
r andMs

r of maximal
link sets (SRLGs) which can be hit by a disaster overestimated by a shape of a circular disk with an
arbitrary given radius r, in case of embedding the network in the Euclidean plane and on the sphere,
respectively. I gave theoretical upper bounds on the cardinality of both Mp

r and Ms
r . I proved that the

proposed algorithm for planar embeddings has a computational complexity which is tight in the number
of network nodes. Finally, compared the similarity of Mp

r in Ms
r in practice.

Thesis 1.1 [C9, J2] I proposed an algorithm, which, in case of representing a connected network topology
G(V, E) in the Euclidean plane with links considered as line segments, computes the list Mp

r of maximal
link sets hit by a circular disk with radius r in O

(
(|V |+ x)

(
log |V |+ φ2rρ

5
r

)
+ x′ log |V |

)
, where x is the

number of link crossings, ρr is the maximum number of links which are hit by a circular disk with radius
r, ρr is the maximum number of links which is hit by a circular disk with radius r, φr is the maximum
number of nodes in the 3r-neighborhood of a link, and finally, x′ is the number of link crossings if the
links are elongated with 3

√
2r in both directions. I proved that the complexity of the proposed algorithm is

tight in |V |. I proved that the cardinality of Mp
r is O ((|V |+ x) ρr), and that this bound is tight. I proved

that
∣∣⋃

0<r′<rM
p
r′

∣∣ is O((n+ x)ρ2r).

I emphasize that although the same problem was investigated in my master thesis [T1], both the
algorithm for enumerating Mp

r with its related theoretic worst case time bound and the theoretic upper
bound on the cardinality |Mp

r | were improved signifigantly. In addition, I proved that, in certain condi-
tions, the complexity of the improved algorithm presented in [J2] is optimal in the number of network
nodes |V |. In the followings, I present the main ideas behind these results.

In paper [C9], I presented a low-polynomial algorithm for computing Mr when links are considered
as line segments (and the network is embedded in the plane). I showed that the number of elements
of Mr is linear in the number of nodes in the network n, and its calculation can be done in a squared
complexity of n (Theorem 6 of [C9]). Simulations indicate that this list has a size of ≈ 1.2n in practice.

To be more precise with the theoretical results, Corollary 4 of [C9] tells that the number of SRLGs
in Mr is at most proportional to the product of 1) the number of nodes n plus the number of link
intersections x, and 2) in the cardinality ρr of the biggest link set contained. The computing time needed
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Figure 1: The disk failures examined.

is O
(
(n+ x)2ρ5r

)
[C9, Thm. 6]. I note that x is 0 or a small number, and according to simulation results,

ρr increases linearly with r, suggesting an O(n2r5) runtime for r > 0.

Algorithm 1: Sketch of algorithm proposed in [C9]
Input: graph G = 〈V,E〉 embedded in plane, radius r
Output: List Mr of maximal SRLGs of disasters being circular disks with radius r
begin

1 M ′r := ∅
2 Calculate X := {points of edge crossings}
3 for w ∈ V ∪X do
4 Determine Ew := {edges not further from w than 3r}
5 for e1, e2 ∈ Ew do
6 Calculate circles ci described in Fig. 1/(a)

end
7 for e ∈ Ew do
8 Calculate circles cj described in Fig. 1/(b) with w as point
9 Calculate circles ck described in Fig. 1/(c)

end
10 Refresh2M ′r with link sets hit by circles ci, cj , ck (1 circle at a time)

end
11 return M ′r as Mr

end

In the followings, I give an overview of the proposed algorithm (Alg. 1), which relies on a series of
geometric considerations. The most important one is Theorem 1 of [C9], which leverages that the link sets
possibly hit by any of the infinite number of possible disaster locations can be determined via checking
the effect of a quadratic number of disks on the network edges. In particular, for a positive real r, and
a non-empty set of edges H which is hit by a circular disk of radius r, there exists a disk c of radius r
which hits the edges of H such that at least one of the following holds (see Fig. 1 for illustrations): (a)
There are two non-parallel links in H such that c intersects both of them in a single point. These two
points are different. (b) There are two links in H such that c intersects both of them in a single point.
These two points are different, and one of them is an endpoint of its interval. (c) Disk c touches the line
of a link e ∈ H at an endpoint of e.

Intuitively, there is no reason for checking for the circles described in Fig. 1 in case of two network
elements which are much further apart than the disaster radius r. Indeed, according to [J2], one can build
up the solution of the global problem based on some local calculations, as follows. Let X be the set of link
intersection points. After determiningX, one has to collect edges not further from w than 3r into a set Ew,
for all w ∈ V ∪X, then determine the maximal failures of sets Ew, and finally, get the result by collecting
the maximal elements of the resulting lists. This can be done in O

(
(|V |+ x)

(
log |V |+ φ2rρ

5
r

)
+ x′ log |V |

)
as proposed in Thesis 1.1.

I gave a lower bound on the computational complexity leveraging Lemma 4 of [18]. Namely, I proved
that reporting that there are no intersecting line segments takes Ω(|V | log |V |) or, in other words, that

2This means that M ′ is the set of maximal failures among which are already checked, and if f is maximal amongst
them, it is added to M ′ and all f ’s subsets are eliminated from M ′; or if f is not maximal in M ′, nothing happens.
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computing Mp
r in the special case of r = 0 needs Ω(|V | log |V |) time. This, together with the upper

bound on time complexity means that the best time complexity in the number of nodes for calculating
Mp
r is Θ(|V | log |V |) · f(x, φr, ρr, x

′), where f() is a function of the parameters.
The upper bound on the cardinality of Mp

r can be proved through some geometric considerations
showing that there are at most O((|V |+x)ρr) pairs of geometric objects which needed to be checked for
possibly causing maximal failures in all three cases of Fig. 1.

∣∣⋃
0<r′<rM

p
r′

∣∣ results similarly.

Thesis 1.2 [C6, J4] I proposed an algorithm, which, in case of representing a connected network topology
G(V, E) on a sphere with links considered as chains of geodesics, computes list Ms

r of maximal link sets
hit by a circular disk with radius r in polynomial time. I proved that the cardinality of Ms

r is O
(
|E|3

)
.

Furthermore,
∣∣⋃

0<r′<∞Ms
r′

∣∣ is also O(|E|3).

In the followings, I sketch claims and an algorithm on calculating either Ms
r or Mp

r , thus everything
holds in the case of the spherical representation of the networks. Lists Ms

r and Mp
r are collectively called

Mg
r , where g stands for the geometry type p or s, standing for planar or spherical, respectively.
Let us make the following definitions for the sake of clarifying the intuition. (1) Let a disk c be smaller

than disk c0, if c has a smaller radius than c0, or if they have an equal radius and the center point of c is
lexicographically smaller than the center point of c0. Among a set of circles Sc, let c be the smallest if it
is smaller than any other circle in Sc. (2) Let F ⊆ E be a finite nonempty set of edges (not necessarily a
failure). We denote the smallest disk among the disks enclosing the polylines of F by cF and we say cF
is the smallest enclosing disk of F .

It is not difficult to see that cF always exists for line segments or geodesics (depending on the
geometry), and thus, by mapping the corresponding segments/geodesics together we can deduct that the
definition is correct for polylines too. The key idea of our approach is that we can limit our focus only
on the smallest enclosing disks cF .

The following observation is the key in bounding the cardinality of Ms
r . Let H be a nonempty set

of polylines of edges with smallest enclosing disk cH . Then there exists a subset H0 ⊆ H with |H0| ≤ 3

such that cH = cH0 . |Ms
r | ≤

(|E|
3

)
+
(|E|

2

)
+ |E| = O(|E|3).

|Ms
r | being O(|E3|) means that if the smallest covering disk of at most three links can be calculated

in polynomial time, one can design a polynomial algorithm for calculating Ms
r . A non-trivial lemma of

Algorithm 2: Determining maximal r-range
SRLG lists

Input: G(V, E), r, geometry g, coordinates of nodes and
edge polylines

Output: Mg
r

begin
1 Mg

r := ∅
2 Store E as a list,
3 for i1 ∈ {1, . . . ,m} do
4 for i2 ∈ {i2,m} do
5 for i3 ∈ {i3,m} do
6 ci1,i2,i3 := c{E[i1],E[i2],E[i3]}
7 if radius of ci1,i2,i3 is ≤ r then
8 f := F (ci1,i2,i3 )
9 refresh Mg

r with f // as in
Algorithm 3

end
end

end
end

10 return Mg
r

end

Algorithm 3: Refreshing SRLG
list M with failure f

Input: SRLG list M , failure f
Output: M refreshed with f
begin

1 maximal:=True
2 for fM ∈M do
3 if f ⊆ fM then
4 maximal:=False

end
end

5 if maximal then
6 M :=M ∪ {f}
7 for fM ∈M do
8 if f ⊃ fM then
9 M :=M \ {fM}

end
end

end
10 return M

end
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[C6] is the following. If H is a set of line segments in the plane or geodesics on the sphere with |H| ≤ 3,
then its smallest covering disk cH can be determined in O(1) time.

This means, that if H is a set of polylines of edges, with |H| ≤ 3, then cH can be determined in
O(γ3) time. For this, one first have to unpack each polyline into the ≤ γ line segments/geodesics it is
consisting of. Then, for each element hi in H, pick a segment si. For each triplet (couple) of segments
calculate the smallest enclosing disk (which can be done in O(1)), and lastly chose the smallest from
among the resulting disks.

Based on these, Alg. 2 computes Mg
r in O(|E|3(γ3 + |E|4)). In the following, I sketch the proof of the

complexity. There are O(|E|3) smallest enclosing disks to calculate, each in constant time. We claim that
for each disk the calculation time of refreshingMg

r with the resulting failure (as in Alg. 3) is O(|E|4+γ3) in
case of each disk, because after the computation of the smallest enclosing disk in O(γ3) and determining
f in O(|E|) there has to be done O(|E|3) comparisons of link set, and each can be done in O(|E|).

Thesis 1.3 [C6, J4] Through simulations, I showed that Ms
r and Mp

r can differ in practice, thus it
is more precise to compute the SRLG lists with the spherical representation. However, in many of the
cases, the distortion yielding from representing the network in the plane is causes less inaccuracy than
the lack of knowledge on the disaster characteristics. In those cases, the planar representation can serve
the purpose of vulnerable region detection well enough.

An important question is that, in practice, under which geographic extension of the network can
one say that, in the viewpoint of SRLG enumeration, it is practically indifferent whether we consider a
spherical or a planar representation of the network. In other words, focusing now only on lists Mr, the
question is that under which size of the physical network will Mp

r and Ms
r (maximal link sets which can

be hit by a single circular disk with radius r, in the plane and on the sphere, resp.) be the precisely the
same. The answer depends not only on the physical size, but also on the characteristics of the network
itself: it can represent a dense metropolitan backbone network with multiple nodes close to each other,
but it can also be geographically very sparse. Let τ be the distance of the closest non-adjacent and
non-intersecting link of the network, and let D be the diameter of the smallest enclosing disk of the
network G. We can see that there can be any difference between Ms

r and Mp
r only if 2r ∈ [τ,D] for the

either the spherical or the planar representation. Practical radii of circular disasters range from couple
of kilometers to couple of hundreds of kilometers, which mean, they might so small that there cannot be
any difference between the SRLG sets (i.e. 2r < τ means Ms

r = Mp
r ). If τ is smaller than the disaster

diameter, then it is easy to find settings, where Ms
r 6= Mp

r .
To study the phenomenon more in details, I used two similarity metrics of the SRLG lists: 1) the ratio

of SRLGs, which are present in only one of Mp
r and Ms

r , i.e.,M(r) := |Mp
r4Ms

r |/(|Mp
r |+ |Ms

r |) ∈ [0, 1],
and 2) the average and maximal Hamming distance of an SRLG from Ms

r to its closest counterpart in
Mp
r . I depicted the values of these metrics in Figures 2a-2c, respectively. As a base of evaluation, I took

an Italian topology (Fig. 2d, with a diameter D = 1180km), and its magnified versions such that the
resulting networks have diameters D = 100, 200, . . . , 1500 km on the sphere. It can be seen that, in most
cases, all of these metric values are 0 (i.e., Mp

r = Ms
r ), but one can witness high spikes of big ratios of

different SRLGs (Fig, 2a), or spherical SRLGs which have a symmetric difference of 3 links with their
closest planar counterpart. This latter phenomenon happens when there are some nodes u, v ∈ V such
that d(u, v) ≤ 2r exactly in one of the spherical and planar representations.

The small and inconsistent ratio of different SRLGs in the two studied SRLG list is due to the
fact that though the Earth surface is curved, this curvature is not practically significant in case of a
backbone topology of a small to medium size country. For example, the maximum distance distortion
of the Ortographic projection over Hungary and Italy (having diameters < 530km and < 1250km) is
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Figure 2: Caption

< 0.1% and < 0.5%, respectively (Fig. 2e). Even the contiguous US can be mapped with < 4% of distance
distortion (Fig. 2f [19]).

Since the calculation time of Ms
r was approximately twice of the Mp

r in my experience, I concluded
as follows. Ms

r and Mp
r can differ, thus it makes sense to compute the SRLG lists with the more precise

spherical representation. However, in many of the cases, the distortion yielding from representing the
network in the plane is causes less inaccuracy than the lack of knowledge on the disaster characteristics
(e.g., there can be as much as 10% inaccuracy in determining the disaster radius), thus the planar
representation can serve the purpose of SRLG listing well enough.

4.2 Enumerating Maximal SRLGs Caused by Circular Disk Shaped Disasters
Hitting k Nodes

The current best practice is to ensure that the primary and backup paths assigned to a connection are
node disjoint. This way operators ensure that the distance between the nodes of the primary and backup
paths (except at the terminal nodes) are in at least 1-hop-distance from each other. The root of the
outages is usually because: (1) close nodes when two nodes are placed close to each other; for example,
in highly populated areas. (2) parallel links when two links are placed close to each other because of some
geographic reasons. Unfortunately, handling the geometric information with the network topology is not
part of the current best practice. Furthermore, the Internet Service Providers usually hire the links as a
service from an independent company, called the Physical Infrastructure Provider, and thus, operators
have limited information about the route of the links, or the physical coordinates of the intermediate
routing nodes. Thesis 2 proposes a way to ensure geographic distance between primary and backup paths.

Thesis 2 [C12, C11, C10, J3] To ensure geographic distance between primary and backup paths when the
geographical embedding the network topology is approximate, I proposed a model for enumerating regional
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Figure 3: Input graph G = (V, E) with containing polygons, |V | = 17, maximum number of sides of the
containing polygons γ = 4.

SRLGs relying only a schematic map of the network topology. For networks described in this model, I
proposed a polynomial algorithm for enumerating list Mk of maximal link sets (SRLGs) which can be hit
by a disaster overestimated by a shape of a circular disk hitting an arbitrary number k of nodes. I gave
theoretical upper bounds on the cardinality of Mk. Evaluating the model and data structure, I showed that
in case of real network topologies as input combined with practical (small) k values, Mk is a reasonably
short list of link sets.

When defining the limited geometric information failure model presented in Thesis 2.1, I had the
following design goals: 1) Do not underestimate the set of links involved in a possible regional failure,
2) Handle networks embedded in a schematic map with the exact route of the cables are unknown, 3)
Allowing the design a fast and space efficient way of calculating the set of SRLGs (presented in Theses
2.2, 2.3).

Thesis 2.1 (The Limited Geometric Information Failure Model) [J3] To ensure geographic dis-
tance between primary and backup paths when the geographical embedding the network topology is approx-
imate, I proposed the following model. The (not necessarily planar) network is modelled as an undirected
connected geometric graph G = (V, E) with |V | ≥ 3 nodes. The nodes of the graph are embedded as points
in the Euclidean plane, and their exact coordinates are considered to be known. In contrast to this, precise
positions of edges are not known, instead, it is assumed that for each edge e there is a containing polygon
(or simply polygon) ep in the plane in which the edge lies.The disasters are assumed to have a shape of a
circular disk with an arbitrary radius and centre position, but hitting at most k nodes for k ∈ {0, |V |−2}.
The failures caused by these disasters are called regional link k-node failures.

I argue this failure model can reasonably represent the possible regional failures, without actually
requiring to know the scaling of the topology map.

Based on our output, operators can generate SRLG-disjoint primary and backup paths to protect
the connection against natural disasters3. The distance between the primary and backup paths is a
straightforward metric to compare the failure models. Based on the logical topology, the conventional
approach to defining the distance is the hop-distance between the nodes traversed by the primary path
and the nodes traversed by the backup path, except the terminal nodes. Based on this definition, we can
list the failure models in increasing order of their strength [J3]: single link failures (≥ 0-hop-distance4,
but link-disjoint routing), single node failures (≥ 1-hop-distance), single regional link 0-node failures,
single regional link 1-node failures, single regional link 2-node failures, etc.

I believe the proposed approach well captures the possible regional network failures based on the
little geographic information available at network devices.

3The routing algorithms modify the SRLGs, whose failure isolates the source and destination nodes: those SRLGs are
replaced with a smaller non-isolating SRLG according to the failure model.

4The minimum distance between the nodes of the working path and the nodes of the SRLG-disjoint protection path,
except the terminal nodes.
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Thesis 2.2 [J3] I proposed an algorithm, which, in case of representing a network topology G(V, E) in
the Euclidean plane with each link e ∈ E being part of a related polygonal region ep having at most γ
sides, computes the list Mk of maximal link sets which can be hit by a circular disk hitting at most k
nodes in O

(
|V |2

((
k2 + 1

)
ρ3k + ρkγ + (k + 1 + log(nρ0)) ρ0γ

))
, where ρk denotes the maximal number of

links hit by a circular disk hitting at most k nodes. I proved that list Mk has O (n (k + 1) ρk) elements,
this bound being tight in these parameters for k = O(1).

The proposed method is based on a set of (computational) geometric considerations. The key ob-
servation is that for any element of Mk there exists a circular disk-shaped disaster having k nodes in
the interior which has (1) two nodes on its boundary, or else (2) only one node u on its boundary and
having an infinite radius. This allows us to enumerate all possible maximal failures using a sweep surface
method as follows.

u

v

w−

c(x−)

w+

c(x+)

n1

n2

n3 n4

e1
e2

e3
e4

xmax
xmin

Figure 4: Illustration of an apple with k = 2. Apple Au,v
k consists of specific ordered lists of links and nodes

which can be hit by a disk from Cu,v
k . For more details, please check [J3].

Let {u, v} ⊆ V be two nodes for which the set Cu,vk of circles which have k nodes in its interior and
u and v on its boundary is not empty. These {u, v} pairs are part of the set Ek of k-Delaunay edges,
and their set can be determined in low-polynomial time [20, Thm. 2.4]. I defined a data structure apple
Au,vk , which contains ordered lists of links and nodes which can be hit by a circle from Cu,vk . Suppose u
and v are positioned as in Fig. 4. With the help of Au,vk , one can sweep through circles of Cu,vk ordered
by the abscissas of their centre points allowing to collect the set Mu,v

k of maximal hit link sets by disks
from Cu,vk .5 Then the globally maximal elements of all lists Mu,v

k are collected in M2
k .

In the second case, the set of maximal failuresM1 fromMk for which exist a half-plane going through
a node and hitting them can be calculated similarly via turning a half-plane around every node while

Au1,v1
k Mu1,v1

k

Ek
...

... M2
k

A
u|Ek|,v|Ek|
k M

u|Ek|,v|Ek|
k

G = (V, E), k Mk

Sw1

k Mw1

k
...

... M1
k

Swn

k Mwn

k

“apples”

“seesaws”

k-Delaunay edges

Figure 5: Sketch of algorithm from [J3] for enumerating set Mk of maximal link sets which can be hit
by a circular disk hitting k nodes.

5The proposed method is similar to the sweep line (sweep surface) algorithms in computational geometry, e.g. Fortune’s
algorithm for computing the Voronoi diagram of a point set [21].
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checking the set of hit links and the number of hit nodes. Finally, Mk can be obtained by collecting
the maximal elements of M1

k and M2
k . The process is sketched in Fig. 5. Unfortunately, discussing the

technical details would exceed the limits of this thesis booklet.

In the following, I present numerical results that validate my model on some realistic physical net-
works. The network topologies with the obtained list of SRLGs for various k are available online6.

Thesis 2.3 In case of real network topologies, with their edges considered polyginal chains and line
segments between their endpoints, respectively, list Mk of maximal link sets which can be hit by a circular
disk hitting at most k nodes has ≈ 1.2 · |V | and ≈ 2.2 · |V | elements for k = 0 and k = 1, respectively.
Additionally, |Mk| increases sublinearly in function of k. Parameter ρk representing the maximal number
of hit links by a disaster hitting k nodes was ≤ 10 for all networks for k = 0, 1, and grew to only to < 25

for k = 5. I concluded that list Mk has a reasonably small size for practical k values.

As noted in the thesis, in the simulations, the input topologies are interpreted in two ways: 1)
polygon, where links are polygonal chains, and 2) line, where the corner points of the polygonal links are
substituted with nodes (of degree 2); here the shapes of links are line segments.

To have a better impression on the SRLGs on Mk, Fig. 6 visualises example results for both inter-
pretations of the US ATT-L1 network, which has 126 nodes and 208 links as polygonal chains, and 162
nodes and 244 links after transforming it into a network of line segments. The 126-node US (ATT-L1)
network was covered with 190 SRLGs, which is less than listing every single node and link as an SRLG.
Fig. 6 shows these SRLGs, intuitively each corresponds to a mid-size regional failure. The SRLGs meet
our intuition that there are more network nodes in the crowded areas, and thus it generates more SRLGs
for them, while in the less crowded areas are covered with SRLGs corresponding to bigger areas.

In practice, it is important to have small SRLGs because it strongly influences the performance of
the survivable routing algorithms. On Fig. 6 the SRLGs are relatively small, each SRLG contains a bit
less than 3 links on average.

Based on Table 1, the number of SRLGs is roughly ≈ 1.2 · |V | for k = 0, and ≈ 2.2 · |V | for k = 1. Fig.
7a depicts this linear growth in n for k = 0. Fig. 7b shows the increase in the number of SRLGs for each
network independently for the same range of k. Here we can experience a slightly sub-linear increase
in |Mk| in function of k. Fig. 7c shows that the edge density ρk increases linearly with k. Parameters
ρk=0 and ρk=1 were less or equal to 10 in case of all investigated networks, and ρk=5 was also below
25. In practice, it is important to have small SRLGs because it strongly influences the performance of

(a) Polygon: there are 190 SRLGs with average of 2.98
links and ρ0 = 5.

(b) Line: there are 216 SRLGs with average of 2.79
links and ρ0 = 5.

Figure 6: The SRLGs of k = 0 are visualized for the two cases (a) links are polygonal chains, and (b) the
corner points of the polygonal line segments are treated as degree two nodes and all links are line segments. In
order to have a perspicuous illustration, each SRLG is drawn with the smallest possible circular disk that covers
all of its links, even if the disk has nodes interior.

6https://github.com/jtapolcai/regional-srlg
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Figure 7: Comparison of the two interpretation of the input topologies: links are polygonal line segments, or
the corner points of the polygonal line segments are treated as degree two nodes and all links are line segments.

Name |V | |E| # SRLG k = 0 # SRLG k = 1
Polygon Line Polygon Line Polygon Line Polygon Line

Pan-EU 10 16 16 22 14 19 27 35
EU (Optic) 17 22 40 45 44 59 57 71
EU (Nobel) 19 28 32 41 36 46 53 81
US [2] 21 24 39 42 48 49 57 64
N.-American 28 39 50 61 65 76 83 97
US (NFSNet) 44 79 73 108 88 124 128 172
US (Fibre) 81 170 141 230 137 189 177 249
US (Deltacom) 103 103 302 302 158 158 218 218
US (Sprint-Phys) 111 264 160 313 156 232 208 307
US (ATT-L1) 126 162 208 244 190 216 255 285
US (Att-Phys) 209 383 314 488 256 352 322 457

Table 1: Results of physical backbone topologies of [22].

the survivable routing algorithms. In our case, ρk=0 ranged between 4 and 8 depending on the network
topology.

We can conclude that Mk has a reasonably small size for practical k values (k <≈ 5).

4.3 Unifying the Terminology on Probabilistic SRLGs and a Tractable Stochas-
tic Model of Correlated Link Failures Caused by Disasters

The likelihood of a disaster to occur is not the same at all points of the plane. For example, earthquakes
are more likely to occur in rupture zones than in other places, and regions with lower altitude are more
likely to suffer from floods. Thus, the probability of an event to occur is important. Thesis 3 tackles
this question by proposing standard terminology, containers and algorithms to speak about, store and
compute Probabilistic SRLGs (PSRLGs).

Thesis 3 [C3, C8, J1] I defined a stochastic model of link failures caused by disasters, which considers
the correlation between failures of links which are geographically close to each other. To unify the notions
and terminology on Probabilistic SRLGs, I proposed standard data structures for containing the disaster
probabilities. In case of circular disk shaped disasters, for the size and query time of these data structures,
I proposed theoretical upper bounds. Evaluating the model and data structures, I showed that in case of
real seismic data as input, these data structures have a manageable size.

Fig. 8 visualises Thesis 3. Namely, on the highest level, I propose standard data structures for storing
failure probabilities of link sets. These data structures are universal, and thus independent of the model,
which is used to fill them up. On the second level, I created a stochastic model of link failures caused
by disasters, which grasps the correlation between the link failures caused by disasters more precisely

11



compared to former models. This model is a general one, as it can handle any kind of disaster events as
input. On the third level, I evaluated my model using real seismic data. This way, the results summarised
in Thesis 3 demonstrate how the raw disaster data alongside with the geographic embedding of the
network topology can be translated to PSRLGs, i.e. simple link sets with an associated probability.
PSRLGs then on their course, are the inputs for service availability queries, stochastic optimization
problems, etc.

Standard data struc-
tures for computing
service availability

FPs and CFPs should be
the standard (Def. 4.2, 4.3)

other models

Tractable stochastic
model for corre-
lated link failures

Captures the failure correlation of
geographically close network elements

other disaster types

Providing
seismic data

Instead of hazard maps, using the more
precise epicenter distribution maps

filling up

the data set

input to transform

into (C)FPs

Figure 8: Components of Thesis 3: 1) standard data structures (CFPs and FPs) for storing joint failure
probabilities of link sets, 2) a tractable stochasic model of link failures caused by disasters, and finally 3) evaluating
using seismic data represented more precisely than the usual.

I divided Thesis 3 in three Subtheses:

Thesis 3.1 [C3, C8, J1] Inspired by earthquake behaviours, I defined a stochastic model of link failures
caused by disasters. This model is the first to explicitly consider the correlation between failures of links
which can be subject to the same disaster. To unify the notions and terminology linked to probabilistic
extensions of Shared Risk Link Groups, I proposed two standard data structures for containing the disaster
probabilities, namely, the FP and the CFP: for a link set S, FP(S) and CFP(S) is the probability that
exactly, and at least S will fail, respectively.

Data set
Precomputing
(numerical
integrals)

Service
availability

query

Figure 9: Framework to compute service availability

Standard PSRLG terminology Let us concentrate on the seismic hazard as an example for a mo-
ment. The hazard induced by earthquakes sometimes given in the form of an epicentre distribution map,
which gives for each location p ∈ R2, the probability that a disaster happened with epicentre p. More-
over, the size (or radius) of the disaster can also be a random variable (e.g., earthquakes with a larger
magnitude are less likely to happen than earthquakes with smaller magnitude, even if their epicentres
are the same). Thus, it is customary to consider a set D of disasters D ⊆ R2 (that can be of infinite
size), and attach a probabilistic measure to this set. For simplicity, let’s assume that D is finite, and let
pD = Pr[disaster D ∈ D occurs]7. We note that an SRLG S can represent more than one disaster in D;
thus, we denote by the support(S) = {D ∈ D|S = SRLG(D)}.

In the literature, there is a variety of non-equivalent definitions of PSRLGs 8, thus a unified termi-
nology is desired. Definitions 4.2 and 4.3 propose standard PSRLG notions. An FP (Def. 4.2) tells the
probability that the failed link set will be exactly S, while a CFP (Def. 4.3) tells the probability that at
least S will fail:

7For infinite sets, one can use discretization and consider only finite number of sets, albeit with a small error.
8E.g. in the first paper considering probabilistic extensions SRLGs (which was [23]), each SRLG event r ∈ R occurs

with probability πr, and once an SRLG event r occurs, link (i, j) will fail independently of the other links with probability
pri,j ∈ [0, 1]. Thus, we could call the [23]-PSRLGs as ’two stage PSRLGs’.
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Definition 4.2 (FP) Given a set D of disasters D ⊆ R2, a probability pD for each disaster in D, and
a link set S ⊆ E, the Link Failure State Probability (FP) of S is FP(S) =

∑
D∈support(S) pD. We note

that if a disaster in support(S) actually occurs, then all links in S fail (with probability 1).

Definition 4.3 (CFP) Given a set D of disasters D ⊆ R2, a probability pD for each disaster in D, and a
link set S ⊆ E, the Cumulative Link Failure Probability (CFP) of S is CFP(S) =

∑
T⊇S

∑
D∈support(T ) pD.

We note that if a disaster in
⋃
T⊇S support(T) occurs, then all links in S fail (with probability 1).

In a sense, FPs are like probability density functions (PDFs), while CFPs are like their cumulative
distribution functions (CDFs). Collectively, we call FPs, CFPs as Probabilistic SRLGs (PSRLGs).

Stochastic model of correlated link failures caused by disasters First of all, my model for
regional failures caused by a disaster assumes the following:

Assumption 1 In the investigated time period, there will be at most one disaster.9

The model has the following parameters with randomly chosen values: epicenter p, which is a point
in the plane R2, shape (and size) s, which is a real value in [0, 1]. Each point p ∈ R2 is assigned with
a hazard h(p) representing the probability that p becomes the epicenter of the next disaster (see Fig.
10a). Specifically, h(p) is a probability density function on the area R2, and therefore,∫

p∈R2

h(p)dp = 1 . (1)

After a regional disaster of the examined type (e.g. EMP attack, natural disasters, such as solar
flares, earthquakes, hurricanes, and floods) the physical infrastructure (such as optical fibers, amplifiers,
routers, and switches) in some area is destroyed. The possible shapes for this area are defined by a set
r(p, s) that represents a closed region on the plane (the actual shape of the destroyed area) as a function
of epicenter p and the shape/size parameter s. This is a general disaster model, where several possible
damage areas can be defined by r(p, s) (see Fig. 10b).

Assumption 2 A regional disaster of epicenter p and shape/size s will result in the failure of exactly
those links of network G which have a point in r(p, s).

The model assumes that r(p, s) is monotone increasing in s (see Fig. 10b for an example)10, or more
formally we assume that

(a) Hazard map h(p) for earthquakes as func-
tion of epicenter p. [25]

s=0

×p

s=1

s= .3 s= .3

s= .6

(b) Shape of regional disaster r(p, s)
for epicenter p and different sizes s =
0, 0.3, 0.6, 1.

Figure 10: Example of real-world inputs.
9The case when more disasters are expected to happen simultaneously can be handled by defining a new mixed disaster

type, see also [24].
10Various failure shapes were studied so far [10, 16, 15, 26, 5, 7, 2, 6, 8, 9, 11, 27, 28, 29, 30, 31, C9], mainly in the form

of circular regional disasters or line-segment failures, but in some cases also for arbitrary geometric objects [15, 26]. All of
these models meet Assumption 3.
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Assumption 3
r(p, s) ⊆ r(p, s′) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1 , (2)

r(p, s) for a given p is a result of uniform sampling of damage areas. Namely, for a given p the probability
of the failure to be of size smaller than s is exactly s. Thus, s is called relative size in the remainder of
the paper.

It is important to notice that given the disaster epicenter and relative size, the outcome of the attack
is deterministic. In other words, any link e within r(p, s) fails with probability 1, if a failure event with
parameters p and s occurs. Let us denote the set of failed links by R(p, s). Assumption 2 implies that,
given a point p, R(p, s) ⊆ R(p, s′) if s ≤ s′. Let s(p, e) denote the corresponding smallest size s for which
a failure at point p can cover link e. Furthermore, we denote by ρ the maximum number of links that
can be affected by a single failure (of maximum size s = 1):

ρ = max
p∈R2

R(p, 1) . (3)

Let f(e, p) be the probability that link e fails if a disaster with epicenter p happens. Note that
f(e, p) > 0 can occur iff e ∈ R(p, 1). f(e, p) can be computed from R(p, s), where s is in the range [0, 1].
Hence,

f(e, p) =

∫ 1

s=0

IR(p,s)(e)ds , (4)

where the indicator function IR(p,s)(e) indicates whether e ∈ R(p, s).
We now extend our notation to capture the probability of the failure of link e in the next disaster:

P (e) :=

∫
p∈R2

h(p)f(e, p)dp. (5)

We denote the probability that a set of links S ⊆ E fail simultaneously, given that the disaster
epicenter is p ∈ R2:

f(S, p) :=

∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds . (6)

In other words, if the sequence of links is S = (e1, e2, . . . , e|S|) ⊆ R(p, 1) and s(p, e1) ≤ s(p, e2) ≤
· · · ≤ s(p, e|S|), then

∏
e∈S IR(p,s)(e) = 1 iff s ≥ s(p, e|S|), otherwise the product is 0. This implies that

f(S, p) = f(e|S|, p) = min
e∈S

f(e, p) . (7)

Finally, using the above results, we can compute CFP(S) as follows11:

CFP(S) =

∫
p∈R2

h(p)f(S, p)dp =

∫
p∈R2

h(p) min
e∈S

f(e, p)dp . (8)

For example, in Fig. 11, the results of applying the formula to the 5-node network are shown for all
the non-zero joint link failure probabilities. In this example, r(p, s) is always a circular disk of radius
s · 50km. Potentially there are exponentially many joint failure events in terms of the network size;
however, links far from each other have zero probability to fail jointly because of a single disaster. This
holds, for example, for links f and e, whose smallest distance is 200km.

Other works (e.g., [15, in the proof of Lemma 8]) expressed the joint failure probability of a set
S by multiplying the failure probabilities of the links in S, thus implicitly assuming these failures are

11FP(S) can be computed based on similar observations.
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Input:

100km

a b

cd

e

f

Network:
Failure model: Type: tornado earthquake EMP . . .
Model parameters:
pd: the probability of a disaster of type d in the given area and time period;
h(p): quantitative hazard map of the area, that is the probability density function of the
location of the disaster epicentre (e.g. uniform distribution on a bounded area on R2);
r(p, s): the shape function of the disaster depending on epicentre p and size s returning
the damaged zone of the disaster (e.g. a circular disk centered on p with radius s);
Regional failure model:
Hazard epicentre: random variable on R2 with probability density h().
Relative size: random variable uniform distribution on [0, 1]. Each link fails having a
point in the disaster area defined by shape function r(), the rest remain intact.

×r(p, 1)

Output:
CFP(a) =.0055 CFP(b) =.0055 CFP(c) =.005 CFP(d) =.005 CFP(e) =.005 CFP(f) =.005

CFP(a, b) =.00068 CFP(b, e) =.00064 CFP(a, e) =.00064 CFP(c, e) =.00056

CFP(d, e) =.00056 CFP(d, f) =.00056 CFP(c, f) =.00056 CFP(c, b) =.00052

CFP(a, d) =.00052 CFP(a, e, d) =.00031 CFP(b, e, c) =.00031 CFP(a, b, e) =0

Figure 11: An illustration of the problem inputs and outputs.

independent. Unlike [15], my model assumes deterministic failure outcome (once its epicenter and shape
are set). This implies that, in my model, failures are dependent. For example, two lines in the same
location (e.g., within the same conduit) always fail together (e.g., when the conduit is cut).

Thesis 3.2 [C3, C8, J1] In case of circular disk shaped disasters, representing the network topology
G(V, E) in the Euclidean plane with links considered as polygonal chains consisting of at most γ line
segments, denoting the number of link crossings by x, an the maximum number of links which are hit
by one of the disasters by ρr, I proved the followings. There are O((n + x)ρ2γ2) FPs with nonzero
probability. The number of CFPs with nonzero probability is lower bounded by Ω(2ρ) and upper bounded
by O(2ρ(n+ x)ρ2γ2). Storing all the nonzero CFPs in a balanced binary tree, the worst-case query time
of the CFP of a given link set is O(ρ log((n + x)ργ)). Storing all the nonzero FPs in a list, the query
time of the CFP of a given link set is O((n+ x)ρ2γ2).

Data set name Space complexity Query time

Ω(2ρ) and
O(2ρ(n+ x)ρ2γ2)

hashing: constant with high prob.
CFP balanced binary tree:

O(ρ log((n+ x)ργ)) worst-case
FP O((n+ x)ρ2γ2) O((n+ x)ρ2γ2)

Table 2: Computing service availability: Trade-off between space complexity and query time

Cardinality of structures FP and CFP In case of the failure model presented before, the number
of FPs can be nicely upper bounded as follows.

Proposition: In case of circular disk shaped disasters (i.e. r(p, s) is circular), there are O((n+x)ρ2γ2)

FPs with nonzero probability.
Proof: Let us concentrate for line segment links for a moment. According to [C9, Claim 2], m is

O(n+ x) for line segment links. We know from [32, Thm. 5] that the number of k-Voronoi cells for line
segments is O(k(m−k)+x), or alternatively, O(k(n+x−k)+x) thus disasters hitting k links can hit at
most this many link sets. Since a circular disk can hit at most ρ links, this sums up to O(ρ2(n+x−ρ)+x),
which is O(ρ2(n+ x)).

If links can be polygonal chains consisting of at most γ line segments, there can be O(kγ(n+ x)γ) of
k-Voronoi regions, yielding an upper bound of O((n+ x)ρ2γ)2) for the number of FPs needed. �
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While CFP(S) can be queried directly to obtain the joint failure probability of a link-set, the number
of CFPs needed to describe the stochastic effect of the next disaster can be very large:

Proposition: A lower and an upper bound on the number of CFPs with nonzero probabilities is
Ω(2ρ) and O(2ρ(n+ x)ρ2γ2), respectively.

Proof: By the definition of ρ, there is a link set S with CFP(S) > 0 and |S| = ρ. As, for any S′ ⊆ S,
CFP(S) > 0 implies CFP(S′) > 0, implying the lower bound. Speaking of the upper bound, by the
former Proposition, there are at most O((n + x)ρ2γ2) nonzero FPs, each having at most 2ρ subsets,
yielding the upper bound. �

Query time of structures FP and CFP It can be shown that, in my model, for any given link
set S ⊆ E, CFP(S) =

∑
T⊇S FP(T ). Based this, in case of list FP and a link set S, to return CFP(S),

one must go through the list and sum up the values FP(T ) for all T ⊇ S. According to the former
Propositions, this can be done in O((n+ x)ρ2γ2).

If structure CFP is stored as a list, the query time of CFP(S) is Ω(ρ). Note that if S is not stored in
CFP, then CFP(S) = 0. The query time of sets can be reduced to a constant with very high probability
(with the help of hashing). Using a balanced binary tree, its worst-case query time is O(ρ log((n+x)ργ)),
by the former Propositions, which is still very impressive. The drawback of structure CFP is that it has
an Ω(2ρ) space complexity, which makes it very inefficient for bigger network densities.

Before stating Thesis 3.3, which presents simulations based on seismic hazard, I spend some word
on a standard scale for measureing the intensity of shaking produced by an earhquake, the Mercalli-
Cancani-Sieberg (MCS) scale [33]. The scale ranges from I to XII: an intensity I ≤V does not cause
structural damage, at I =IX, soil liquefaction starts, and finally, I =XII means total damage.

Thesis 3.3 [C3, C8, J1] Using real-world seismic hazard data combined with Italian, European and
contiguous US network topologies, I found the followings. Assuming network equipment fails only at a
shaking of intensity IX of the MCS scale, there is no significant difference in the cardinality of CFPs
and FPs with positive probability. The number of CFPs becomes unacceptably large and slow to compute
only at the combined presence of strong earthquakes (with Mw ≥ 8), short network links (≤∼ 70 km),
and network resources poorly resistant to ground shaking (failing at intensity VI). Structure FP has a
low cardinality and can be computed in some minutes in these circumstances too, even on a commodity
laptop. Finally, listing CFPs with at most l links rarely yields a list equivalent to keeping some of the
most probable CFPs.

In this thesis, I present numerical results that validate our model and demonstrate the use of the
proposed algorithms on some real backbone networks (taken from [34] and [C3], resp.) accompanied with
real seismic hazard inputs. The algorithms were implemented in Python 3.6., using its various libraries,
respecting the regional failure model presented at Thesis 3.3, while discretizatizing the problem. Run-
times were measured on a commodity laptop with core i5 CPU at 2.3 GHz with 8 GiB of RAM.

Seismic Hazard Representation During the evaluation, we are investigating the failures caused by
the next earthquake within a given geographic area, thus we assume there is exactly one earthquake in
the investigated time period. The earthquake is identified with its epicenter and moment magnitude [35]:
epicenter ci,j , which represents a latitude-longitude cell on the Earth’s surface, taken from a grid of
cells over the network area, and moment magnitude Mw ∈ {4.6, 4.7, . . . , 8.6} =:M. We index the cell
grid such that i ∈ {1, . . . , imax} =: Ii, j ∈ {1, . . . , jmax} =: Ij .

Let Ei,j,Mw
denote the set of earthquakes with centre point in ci,j and magnitude in (Mw− 0.1,Mw].

As cells and magnitude intervals are considered small enough that the failures caused by each earthquake
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Figure 12: Seismic input data

in Ei,j,Mw will often be the same12, we will represent all Ei,j,Mw with a single earthquake having a center
point in the center of ci,j and a magnitude of Mw. Let the probability that the next earthquake is in
Ei,j,Mw be pi,j,Mw . Note, that these probabilities add up to 1, i.e.

∑
i,j∈Ii×Ij

∑
Mw∈M pi,j,Mw = 1.

The initial input is the activity rates ri,j,Mw of earthquake types (see Fig. 12a) instead of the pi,j,Mw

values, so we have to translate these rates to probabilities. We claim that under the assumption that
each kind of earthquake Ei,j,Mw is arriving according to independent Poisson arrival processes13 with
parameters ri,j,Mw , the rates of earthquakes Ei,j,Mw are straightforward to translate into the probabilities
pi,j,Mw of being the next earthquake to occur

pi,j,Mw
= ri,j,Mw

/ ∑
i,j∈Ii×Ij

∑
Mw∈M

ri,j,Mw
. (9)

Each network element e has an associated intensity threshold t(e) meaning that if the intensity
I of the ground shaking reaches this threshold (I ≥ t(e)) at any point of the physical embedding of
e, the element fails. In our simulation, every network element has the same threshold t(e) := t, where
t ∈ {VI,VII,VIII,IX,X,XI,XII} := T according to Mercalli-Cancani-Sieberg (MCS) scale [33].

After each earthquake Ei,j,Mw
, the physical infrastructure (such as optical fibers, amplifiers, routers,

and switches) in an area disk(ci,j , R(Mw, t)) of a circular disk is destroyed. The center point of disk(ci,j , R(Mw, t))

is the center of ci,j , while its radius R(Mw, t) is monotone increasing in the magnitude Mw, and decreas-
ing in the intensity threshold t (see Fig. 12b). As earthquakes can occur anywhere in the cell, we increase
the radius by the distance between the center of the cell and its outer corners. This way, the disk is
always an overestimate of the damaged area of any earthquake in cell ci,j with magnitude Mw.

Calculating activity rates and disaster radii is not subject of my theses.

Simulation results I did our experiments on six topologies, of which one is Italian (Fig. 13), two are
Europeans, and three are US topologies. On Table 3, one can see the node and link count of the networks,
along with the number of related CFPs and FPs with nonzero probability in case of an intensity tolerance
t =VI. Regarding the number of CFPs, one can observe that the networks group by geographic location:
the US topologies have roughly 200 to 600 CFPs, the Europeans have more: ∼ 5 × 104 to ∼ 3 × 105,
and finally, the Italian topology has a lot, ∼ 107. This result is due to the shorter links in Europe, and

12The sides of grid cells used in our simulations were 0.05◦ long in the Italian rate map, and 0.1◦ in case of the EU and
the USA, meaning 4km to 10km of cell side length.

13Although earthquakes can be clustered in time and space with their distribution that is over-dispersed if compared
to the Poisson law , a common way to treat this problem (i.e. cluster in time and space) is to decluster the earthquake
catalog, as we did: before using the catalog, we removed all events not considered main shocks via a declustering filter [36].

17



Network name n m # CFPs at t =VI # FPs at t =VI
Italian 25 34 8358809 764
US 26 43 229 144

Nobel EU 28 41 51812 256
EU 37 57 295235 362

N.-American 39 61 348 208
NFSNET 79 108 550 327

Table 3: The investigated network topologies Figure 13: Italian topology

especially in Italy, and refrains the theoretical complexity of Ω(2ρ), i.e. the exponential number of CFPs
in function of the maximal number of hit links ρ. The number of FPs ranges in [144, 764], which is
significantly smaller than the number of CFPs, and aligns with the theoretical polynomial upper bound.
The list of FPs was calcualted in some minutes in all the invesigated settings on a commodoty laptop.

Fig. 14a gives a more detailed explanation on the number of CFPs seen on Table 3 through the
values of ρ, the maximum number of links hit by an earthquake. At t =VI, the Italian has a ρ = 22,
for Nobel EU and EU, ρ = 15, and finally, for the US, N.-American and NFSNET, ρ equals 5, 5 and 6,
respectively. Apparently, networks covering similar geographic areas have similar ρ values, thus, similar
orders of magnitude of CFPs.

On Fig. 14b, we can see the space requirement of structures CFP() and FP() in function of the
intensity threshold t. The sudden drop in the number of CFPs dies down after t =IX, and starting from
here, the number of CFPs is not significantly higher than the number of FPs.

Remaining at the cardinality of the failed link set, Fig. 14c investigates in details the dependency
between CFP(S) and |S|, for |S| = 1, 2 and 3. There are 34 single link failures in the Italian network whose
CFPs range between [0.0029, 0.12], there are 428 dual link failures with non-zero probabilities between
[5×10−9, 0.0035], there are 3030 triple link failures with non-zero probabilities between [5×10−9, 0.0015].
Here we can see that the least probable CFPs with size l is less probable with size l + 1, thus listing
CFPs with at most l links rarely yields a list equivalent to keeping some of the most probable CFPs.
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Figure 14: Simulation results for my PSRLG model
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5 Applicability of New Results

Results presented in my Theses constitute state of the art algorithms and models for enumerating regional
Shared Risk Link Groups (SRLGs) and regional Probabilistic SRLGs (PSRLGs), which structures are
key in translating the composed geometric problem of protecting telecommunication networks against
regional failures to purely combinatorial and probabilistic problems, respectively.

Regional SRLG lists offered by Theses 1 and 2 are key inputs for creating geodiverse routing algo-
rithms. Since routing methods are not aware of the geometrical embedding of the topology, providing
the list of link sets which may fail simultaneously allows the routing to become disaster-disjoint. SRLG
lists Mr and Mk in Theses 1 and 2 are designed for the case when the Internet Service Provider do or
do not know the exact geometry of the network topology, respectively.

The results of Theses 1 and 2 are also vital for determining monitoring trails for regional failure
detection. This is simply because without knowing the sets of links which are considered to have a high
chance of failing jointly, one would have to use an infeasibly large number of costly m-trails for detecting
regional failures.

The PSRLG model and data structures (CFP() and FP()) presented in Thesis 3 enable fast service
availability queries, which are crucial in optimizing these availabilities. Their effectiveness was demon-
strated through converting seismic hazard data to PSRLGs, and could be used for other disaster types
too. I believe the proposed data structures CFP() and FP() should be used as standard containers of
disaster hazards.
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