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Abstract—In this paper, we deal with the complexity of
problems related to finding cost-efficient, disaster-aware cable
routes. In particular, we compare two very different versions of
the problem. In the first version, only the worst-case scenarios are
considered, while in the second, the probability of the disasters is
also known, and the aim is to find the most cost-efficient solution
in terms of investment cost and risk of a network outage. Worst-
case computations allow using efficient computational geometry
algorithms, and even large networks can be analyzed. On the
other hand, to find the cost-efficient soltuion, a lot of empirical
hazard data must be processed, and heavy algorithms must be
used. In this paper, we study the benefits and drawbacks of each
model. In particular, we define multiple versions of the problem
and investigate their complexity.

I. INTRODUCTION

Several studies revealed how vulnerable the Internet back-
bone is to natural disasters, such as earthquakes, hurricanes,
and tsunamis, which may destroy several nodes and links
located in possibly a few hundred kilometers wide geographic
areas [1]–[13]. This study focuses on the problems related to
installing new fiber cables [14]–[16], which are effective only
if the new cables are properly placed. The first studies used a
simplified model, where the risk of a cable cut depends only
on the location, and the possible failures are independent of
each other.

Recently, two papers [17], [18] have been presented in the
same section of a conference that already consider more so-
phisticated failure models, where natural disasters are modeled
as a failure of a geographic area, and thus the correlation
of failures is considered. Although the engineering prob-
lems are similar, the two studies use different mathematical
models and result in slightly controversial conclusions. In
particular, [17] mostly focuses on subproblems that can be
solved with polynomial-time algorithms, while [18] shows
even the minimalistic problem is NP-hard and focuses on
heuristic algorithms. This paper first describes the differences
in the mathematical models, then investigates their benefits and
weaknesses. Our focus is mainly on algorithmic complexity
aspects: defining a problem in one way, we have efficient
polynomial algorithms, otherwise, we are facing a clearly NP-
hard problem.

The paper is organized as follows. Sec. II provides an
introduction and comparison of problem formulations of [17]

and [18]. Sec. III presents the main contributions of the paper
that is the NP-hardness and inapproximability proofs of sev-
eral closely related network extension problem formulations,
including the one tackled in [17]. In Sec. IV, a discussion
on the model of [18] is presented. Finally, Sec. V and VI,
presents our future research directions, and concludes the
paper, respectively.

II. MODELS AND ASSUMPTIONS

The network is modeled as an undirected connected ge-
ometric graph G = (V ,E ) with n = |V | nodes and m = |E |
edges1. The nodes of the graph are embedded as points in the
Euclidean plane, and each edge is considered to be a finite
sequence of line segments2. The task is to extend the network
topology with new links such that its vulnerability against
natural disasters decreases. The outcome of the algorithms is
a set of new links (end nodes of each link) with the exact
route of the cable (between the endpoints). The objective is
to minimize the installation cost of the new cables which is
related to the total cable length.

Both studies assume a disaster destroys some set of points
in the plane, and if a link or node intersects with any of these
disaster points, it is destroyed. The first key difference is that
[17] assumes the points of a disaster must be connected,
while in [18] there is no such restriction. Our first observation
is that

Observation 1. The problem defined in [18] is NP-hard [18,
Theorem 1]; however, it is not known whether it remains NP-
hard if every disaster has to be a connected set of points.

Note that the construction in the NP-hardness proof in Theo-
rem 1 of [18] builds on the existence of disasters that result
in a simultaneous failure of multiple network elements very
far from each other, see Sec. IV-B for more discussion. On
the other hand, [17] assumes if multiple network elements
fail simultaneously because of a disaster, then they must
be in the same geographic area. The first key difference
between the models is that such geometric constraints of
the failure significantly simplify the underlying algorithmic

1 [18] defines the network topology as a directed graph.
2 [17] assumes the links are a line segment, but it can be easily extended.



Fig. 1: The blue line segments illustrate the construction of a new
edge in the cost-efficient [18] model: the edge is along a predefined
grid, where it can take a vertical, horizontal, or diagonal line segment.
The green curve demonstrates the shape of the added cables in
the worst-case [17] model: it avoids a circular area to survive disk
failures.

problem. When the aim is to prepare the network for worst-
case scenarios, it is realistic to assume a disaster in practice
damages network equipment in a connected geographic area.
Otherwise, there might be regional failures, where multiple
areas are damaged close to each other.

The second key difference is the final goal: whether the
worst-case scenarios should be considered [17], or the prob-
ability of the disasters is also known, and the aim is to find
a cost-efficient investment cost as a trade-off with the risk of
a network outage [18]. Worst-case computations allow using
very efficient computational geometry algorithms, and even
large networks can be analyzed. On the other hand, to find
a cost-efficient solution, a lot of historical hazard data must
be processed, and heavy algorithms must be used. We note
here that, in [18], the trade-off for the cost-efficient approach
is defined through a parameter α representing the relative
importance of high availability compared to the upgrade cost.

In the study [18], the set of disasters is predefined (∼ 500000
in the simulations), and each disaster can destroy an arbitrary
set of points in the plane. For each predefined disaster, a
probability is also assigned, such that these probabilities are
summed up to 1 in the input. This failure model is similar
to Probabilistic Shared Risk Link Group failures, where the
set of failure events with their probability is known in net-
work planning [13], [19]–[22]. In this disaster model, it is
challenging to define whether a new cable is affected by a
disaster if the cable can take any arbitrary route. To mitigate
this problem, [18] limits the route of the cable to traverse along
a 2D grid. More precisely, the cable should traverse the points
of a predefined grid, where it can take a vertical, horizontal,
or diagonal line segment, see the blue link on Fig. 1 as an
example.

The problem input size strongly depends on the size of the
cells. In the simulation, the authors evaluate 5.5km cells (0.05
degree) over Italy. Another drawback of mapping the routes to
the grid is that it introduces an error in its length evaluation.
Compared to Euclidean distances, the excess length can be as
much as 8%, see Section IV-A.

However, in practice, the cost of implementing a cable
strongly depends on the location, which can be easily included
in the grid model. Note that the failure probabilities are
computed using stochastic models of the disasters, where the
failed points form circular disks in the simulation [13], [19].

On the other hand, [17] aims to provide a worst-case
analysis, where the network should be prepared for an infinite
number of possible disaster scenarios. Here the probability of
each disaster is ignored, and the solution should survive any
possible disaster. This is a fundamentally different concept,
where the route of the cables should not be restricted to a grid,
see the green curve on Fig. 1 as an example. It utilizes the
disk failure model with fixed radius, where a regional failure
occurs at a point known as the epicenter that corresponds to an
area in the shape of a circular disk c of radius r . All network
elements intersecting with the area might be affected, and all
other network elements are unaffected. This worst-case model
results in significantly smaller problem sizes. For worst-case
analysis, the latter failure model boils down to preparing the
network to survive the joint failure of the links intersecting a
circular disk of the given radius, formally

Definition 1. A circular disk failure c hits an edge e if e
intersects the interior of disk c. Similarly, node v is hit by
failure c if it is in the interior of c. Let Ec (and Vc ) denote the
set of edges (and nodes) hit by disk c.

Apart from the above differences, the two models adopt
a similar objective. Both models focus on connectivity, thus,
both ignore the routing. In other words, if the network re-
mains connected after the failure, both assume the nodes can
communicate. The study [18] is more general in two aspects,

1) defines an impact metric (denoted by M and similar to a
traffic matrix), and

2) defines the cost of losing a connection between two nodes
because of a disaster (denoted by α) relative to the cost
of implementing 1 km optical fiber.

Note that the worst-case model is equivalent to α = ∞. M
defines how important it is to avoid losing a connection
between a given source and destination node pair in case of
disasters. In the worst-case model, M = 0 if all node pairs
are connected, and M > 0 otherwise. Note that since in [17]
α =∞, their value is not relevant. In the simulation of [18],
M is the number of disconnected node pairs divided by the
total amount of node pairs. Thus, M = 0 if all node pairs are
connected, and M = 1 if all node pairs are disconnected.

Furthermore, [18] can adjust the cost of implementing new
cables at each location, which depends on the terrain and other
factors. This is uniform in [17], thus it corresponds to their
total physical length.

Finally, the objective function is composed of two parts: the
first is α times the impact of losing a connection because of
a disaster, while the second is the cost of implementing new
cables.

Note that the special case of α = ∞ boils down to the
following definition in [17].



Definition 2. A network survives a circular disk failure c if
the graph Gc = (V \Vc ,E \Ec ) is connected.

In the following, multiple versions of the algorithmic prob-
lems are defined, depending on whether a single edge or mul-
tiple edges can be added. Table I summarizes the differences
in the problem definitions investigated in the related papers.

For the worst case, the first problem concentrates on con-
necting two given nodes of the network after a circular disk
failure. [17, Claim 4.] proves that it is possible to find the
optimal solution in polynomial time, given that a single cable
is added. The algorithm is based on computational geometry
algorithms, such as offsetting areas bounded by line segments
and circular arcs and the geometric Dijkstra algorithm. It is
proved in [17, Theorem 1.] that the optimal solution contains
either one or two newly added edges, depending on the length
of the destroyed edge that previously connected them. If the
length is shorter than 4 times the radius of the circular disk, it
is more economical to deploy two shorter cables. On the other
hand, the complexity of finding the optimal solution with two
new cables is still an open question.

Meanwhile, if the aim is to find a cost-efficient solution,
the problem of adding a single edge between two given nodes
is already NP-hard [18, Theorem 1.]. As the former can
be phrased as a special case of the more generic problem
of computing the cost-efficient network augmentation, the
generic problem of [18] is also NP-hard.3

The following four problems are based on the model of [17].
The aim is to find the minimum cost network topology addition
in order to survive a single point or circular disk failure of
radius r at any location. These connections are reached by
either allowing only new edges, or extra nodes as well. Such
extensions result in increased complexity: we will prove in the
following, that the decision versions of the problems are NP-
hard, and no Fully Polynomial Time Approximation Scheme
exists for them (unless P=NP).

For each of the problem versions, the input is the same
network topology:

Input : A network represented by an undirected geometric
graph G = (V ,E ), where the nodes are embedded
as points, and the edges as line segments in the
Euclidean plane, maximum radius r of a possible
regional failure, and the limit on the total length of
the curves ∆r .

The problem outputs are given as follows:

Network Augmentation (NA) Problem
Output: Are there curves added as new edges to E , such

that the network survives any point failure, and the
total length of the curves is at most ∆r .

3We note that the route of fibers typically follows highways, railways, or
gas pipelines [24]; neither the model of [17], nor that of [18] fully support
this as they are presented. For more disaster models, see [25].

Geometric Network Augmentation (GNA) Problem

Output: Are there curves added as new edges to E , such
that the network survives any circular disk failure
of radius r (see Def. 2), and the total length of the
curves is at most ∆r .

Network Extension (NE) Problem
Output: Are there nodes added to V as so-called Steiner

nodes and curves through V and these Steiner nodes
added as new edges to E , such that the network
survives any point failure, and the total length of the
curves is at most ∆r .

Geometric Network Extension (GNE) Problem
Output: Are there nodes added to V as so-called Steiner

nodes and curves through V and these Steiner nodes
added as new edges to E , such that the network
survives any circular disk failure of radius r , and the
total length of the curves is at most ∆r .

III. COMPLEXITY RESULTS

In this section, we present our main results, which are the
NP-hardness proofs of the above problems (as listed in the
last two lines of Table I). These proofs are inspired by the
theoretical papers [23], [26]. For an introduction to complexity
theory, and approximation algorithms, we refer the reader to
[27] and [28], resp.

Very intuitively, all of out proofs are based on the fact
that, in case of taking the nodes (without edges) of a grid
graph (Def. 3) accompanied with a small-enough disaster
radius, deciding whether a best solution is cheaper than a
given threshold translates to answering the question if there
extists a Hamiltonian cycle in the original grid graph, that is
an NP-hard problem.

Our most important proposition is that the worst-case prob-
lem defined in [17] is NP-hard:

Theorem 1. The GNA Problem is NP-hard.

As defined, in the case of the GNA problem, we want the
network to survive circular disk failures of a given radius.
Compared to this, intuitively, it is easier to cope with single-
point failures. Thus, in the following, we first prove the NP-
hardness of the NA problem. In its proof of NP-hardness
(just as in the upcoming proofs), we will rely on the NP-
completeness of finding a Hamilton-path in grid graphs:

Definition 3. G(V ,E) is a grid graph if its nodes are embedded
in the plane with integer coordinates in a related Cartesian
coordinate system, and there is an edge between two nodes u
and v exactly if their distance d(u, v) = 1.

Claim 4. [26, Theorem 2.1.] The Hamilton circuit problem
for grid graphs is NP-complete.

We call the above problem as HCGG. See Fig. 2 for an
example grid graph with a Hamilton circle.



TABLE I: The complexity of different versions of problems investigated

Worst-case (α=∞, circular disk failures, uniform cable costs) Cost-efficient
The radius r is very small Arbitrary radius r

Add a single edge ∈ P [17], it is based on offsetting areas and the geometric Dijkstra algorithm The problem is NP-hard [18]
Add two edges between a node-pair Complexity not known
Add multiple new edges Problem NA is NP-hard (Lemma 5) Problem GNA is NP-hard (Theorem 1)
Add multiple new edges and nodes Problem NE is NP-hard (Lemma 7) [23] Problem GNE is NP-hard (Lemma 8)

Fig. 2: An example of a grid graph that contains a Hamilton
circle.

Lemma 5. The Network Augmentation (NA) problem is NP-
hard.

Proof: We start with a set of nodes V that have integer
coordinates according to a Cartesian coordinate system over
the Euclidean plane. Let E be empty, i.e., we have no network
links built yet. The cost ∆r is set to n.

We first observe that, for surviving a single point failure,
the network has to remain connected after the removal of any
link or node, i.e., it has to be 2-connected. Thus, the degree
of every node in V has to be at least 2. Since the minimum
distance between nodes is 1, this means the cheapest solution
to the NA problem has a cost of at least n. Since our budget
∆r is just n, this means that if the NA problem has a solution,
it has a cost of ∆r . In addition, the degree of all nodes has to
be 2, i.e., the resulting graph has to be a cycle.

We claim that any cycle over V that is not a subgraph of the
grid graph induced by V has a length at least n+p

2−1, since
it necessarily contains at least one diagonal edge between two
nodes with integer coordinates. Thus, if there exists a valid
solution to our NA problem setting, it can be nothing else
than a Hamilton circuit H(V ,EH ) in the grid graph induced
by V . We note that H does not cross itself either in a geometric
sense, thus it is a valid solution to the NA problem.

We conclude that the NA problem is NP-hard since the
Hamilton circuit problem in grid graphs (HCGG) is NP-
complete (Claim 4).

Now we turn to the proof of Theorem 1 stating the GNA
problem is NP-hard:

Proof of Theorem 1: Let our GNA problem instance
be the following. We only consider the problem on grid
graphs, i.e., let the coordinates of every node v ∈ V be
integers in a related Cartesian coordinate system in the plane.
Let E be empty, i.e., we have no network links built yet.

Let the disaster radius be 0 ≤ r < 1
n

p
2−1
4π . Finally, let the

cost be ∆r = (
n +p

2−1+n(4rπ+1)
)

/2. Note that ∆r ∈[
n (4rπ+1) , n +p

2−1
)
.

Our first observation is that any solution S of the GNA
problem is a solution of the NA problem too, since S has to
remain connected in case of any point failure. This observa-
tion, combined with the proof of Lemma 5 yields that any
solution S(V ,ES ) of our GNA problem instance (that has to
have a cost at most ∆r < n+p

2−1) has to have the following
properties:

1) S is a cycle,
2) every edge in ES connects two nodes that are adjacent in

the grid.
This means that if there exists a solution to our GNA

problem setting, then (neglecting the geometric embedding for
a moment,) it has to be a Hamilton circuit over the grid graph
induced by V . To complete our argument of NP-hardness of
the GNA problem, we need to show the following: if there
exists a Hamilton circuit on the grid graph induced by V , then
there exists a Hamilton-circuit-like solution of our problem
setting with cost ≤∆r .

Next, we will show that we can use curves for the edges of
the Hamilton circuit such that the network survives any disk
failure, and for small enough r this solution has a length less
than n +p

2−1. The high-level idea is that in the vicinity of
each node, the curve is a circular arc of radius r , and these arcs
are connected by straight line segments, see Fig. 3. One can
imagine it as if there are circular disks, (e.g., coins) attached
to each side of the cable at each node, and we pull the cable
to be as short as possible (as it was a rubber band) since the
goal is to minimize the total cable length. In this case, the
cable will traverse each node along a circular arc, otherwise,
it consists of line segments.

In the next paragraph, we will show that the above setting is
a valid solution, which is resistant to any circular disk failure.
To complete the proof, we will also need to show that the
length of the curves is at most n(2rπ+ (2rπ+1)).

In this paragraph, we show that there is no circular disk of
radius r whose failure will separate the network into multiple
isolated components. We draw blue circular disks on Fig. 3
corresponding to the arcs for every node. We draw a red line
through the node and the center of the corresponding circle.
Assume there is a circular disk D failure close to node v . The
center of D is either on the red line or on either side of it. In
the first case, D cannot hit both edges incident to v , only if
v is hit too. In the second case, if D does not hit v , it will
be too far from the edge on the other side of the red dividing



line, therefore only the closer edge is affected. This argument
can be repeated for every node.

Finally, we give an upper estimate of the total length of
the edges of the resulting graph. Considering the routes of
the edges together as a close curve, it has at most n arcs,
which cannot be longer than the circumference of the circle,
thus, they contribute to the total length of no more than 2rπ
each. The curve also has n line segments, which have lengths
at most 2rπ+1 each. This latter estimate holds because the
routes given between the end of the edges are no longer than
2rπ+1, see the dashed red line in Fig. 3. As an example, line
segment w x is shorter than path w-v-y-x (in red) because the
former is the straight line segment between w and x. Nodes
v and y were adjacent grid points thus their distance is 1.
Arcs Ùw v and Øy x are arcs of circles with radius r and neither
of them can be longer than the half circumference. Together,
|Ùw v |+|Øy x| ≤ 2 · 2rπ

2 . Based on the former, we can see that the
length of edge w x can not be more than 2rπ+1. This can be
shown similarly for every edge. We can conclude that the total
length of the edges of the graph is at most n(2rπ+2rπ+1).
If r < 1

n

p
2−1
4π , then the total cable length is strictly less than

n +p
2−1.

Based on the above, we conclude that the GNA problem is
NP-hard, since the Hamilton circuit problem in grid graphs is
NP-complete (Claim 4).

The above problem versions assumed that only new cables
could be installed. However, installing new network nodes
along new cables is also an option. With this in mind, now
we turn to present the proofs of NP-hardness of the NE
and GNE problems. First, we present the following Claim 6
that is a rephrasal of [23, Lemma 2]. The original Lemma
is tackling the 2-Connected Steiner Network Problem in the
Plane (2SNPP) [23], that, in case of no network edges (i.e., E

is empty), is a special case of our Network Extension problem.

Claim 6 (rephrased Lemma 2 of [23]). Let V be a set of n
integer grid points, and let the set E of original links be empty.
Then

• Every solution to the NE problem is of length at least n.
• The only solutions to the NE problem of length exactly

n are Hamilton circuits such that every two successive
points are adjacent in the grid.

• All other solutions are of length at least n +p
2−1.

Lemma 7. The Network Extension (NE) problem is NP-hard.

Proof: We start with a set of nodes V that have integer
coordinates according to a Cartesian coordinate system over
the Euclidean plane. Let E be empty, i.e., we have no network
links built yet. The cost ∆r is set to n. By Claim 6, if there
exists a solution to this Network Extension problem setting, it
has to be a Hamilton circuit that is a subgraph of the grid graph
induced by n. We conclude that the NE problem is NP-hard,
since the HCGG problem is NP-complete (Claim 4).

Lemma 8. The Geometric Network Extension (GNE) problem
is NP-hard.

Proof: Let the settings of our GNE problem instance
be similar to those seen in the proof of Theorem 1. More
precisely, we consider the following. We only consider the
problem on grid graphs, i.e., let the coordinates of every node
v ∈ V be integers in a related Cartesian coordinate system in
the plane. Let E be empty, i.e., we have no network links
built yet. Let the disaster radius be 0 ≤ r < 1

n

p
2−1
4π . Finally,

let the cost be ∆r = (
n +p

2−1+n(4rπ+1)
)

/2. Note that
∆r ∈ [

n (4rπ+1) ,n +p
2−1

)
.

We observe that a solution of the GNE problem is a solution
to the NE problem too. This, combined with Claim 6 means
that a valid solution of the GNE problem with cost ∆r < n +p

2−1 has to visit the vertices of n according to a Hamilton
circuit on the grid graph induced by V . Note that if a Hamilton-

v

(a) An example grid network with (near) optimal cable routes

v

w

x

y

(b) Part of Fig. 3a inside the gray rectangle magnified

Fig. 3: The illustration of the network used in the proof of Theorem 1



circuit-like solution described above exists, it has a cost of
n(4rπ+1) <∆r .

We conclude that the GNE problem is NP-hard, since
the Hamilton circuit problem in grid graphs is NP-complete
(Claim 4).

As we have seen, all of the problems NA, GNA, NE, and
GNE are NP-hard. Looking inside their proofs of NP-hardness,
we can see that there is even no Fully Polynomial Time
Approximation Scheme (FPTAS) for these problems.

Corollary 9. For each of the NA, GNA, NE, and GNE prob-
lems, there is no Fully Polynomial Time Approximation Scheme
(FPTAS), unless P = N P . More precisely, no polynomial-
time 1+ 1/5n approximation exists for these problems, unless
P = N P .

Proof: An FPTAS takes as input an instance of a problem
(e.g., NA, GNA, NE, or GNE) and a parameter ε> 0. In the
case of minimization problems, it returns as output a solution
whose value is at most 1+ε times the optimum within a run-
time that is polynomial in the problem size and in 1/ε. A
consequence of the following argument is that in the case of
NA, GNA, NE, or GNE, no such algorithm exists for ε= 1/5n,
unless P = N P .

For an instance of the Network Augmentation and the
Network Extension problems, we have from Lemma 5 and
7, respectively that a solution to the problem instance that
is a Hamilton circuit on the grid graph induced by V , has
a cost of n, while any other solution must have length
at least n +p

2 − 1 > n + 0.414. Now for ε = 0.414/n, an ε-
approximation to the NA and NE problem, resp., will have a
length less than n+0.414 if and only if HCGG has a feasible
solution. It follows that there can be no algorithm that finds
an ε-approximation in time polynomial in 1/ε = n/0.414 unless
P = N P .

Similarly, in case of the geometric problem versions, the
Hamilton-circuit-like solutions have a cost of n(4rπ+1), that,
for r = 1

n

p
2−1
8π is n+

p
2−1
2 . All the other solutions cost at least

n +p
2− 1. Now for ε =

p
2−1
2 /n ' 0.207/n, an ε-approximation

to the GNA and GNE problem, resp., will have length less
than n+0.207 if and only if there exists a Hamilton circuit in
the grid graph induced by V . It follows that there can be no
algorithm that finds an ε-approximation in time polynomial in
1/ε' n/0.207 unless P = N P .

We note that the inexistence of an FPTAS does not mean
that big instances of the problem versions cannot be solved
efficiently nearly optimally. In fact, indifferently of n, the
best Hamilton-circuit-like solutions are no more than ' 0.414
shorter than any other type of solution, meaning only an
additive gap that may be negligible in the case of large
networks extending over vast areas.

IV. DISCUSSION OF THE COST-EFFICIENT MODEL

In this section, we investigate the cost-efficient version of
the problem. In particular, we evaluate the maximum error in
the cost function because of limiting the routes of the new

cables to connect a series of neighboring cell center points.
We call this effect the discretization of the topology map.

Next, we discuss Obs. 1, namely, why the NP-hardness
proof in Theorem 1 of [18] is not valid if a disaster must
be a connected set of points.

A. The maximum error in the cost over a grid for uniform
cable cost

DC

A

B

e

e f −e

β

Fig. 4: Illustration for the proof of Lemma 10. The red line segment
denotes the Euclidean shortest path between A and B , while the blue
line segments denote a shortest grid-based cable route. The grid-based
cable route can be up to ∼ 8.24% longer than the Euclidean distance.
The greatest error occurs at β= π/8.

Lemma 10. The maximum error in the cost over a grid is
∼ 8.24% for uniform cable cost.

Proof: Suppose we have a grid, where the cells have
unit side lengths, and each endpoint of the cable is placed
in the center of a cell. Points can be connected using vertical,
horizontal, or diagonal line segments that connect adjacent
cells in the grid. Here, two cells are said to be adjacent if they
share a common face or corner; consequently, each cell has 8
neighbors. Suppose that our starting point is A, and we want
to reach B , placing line segments after each other. Let e be
the vertical, and f be the horizontal distance between A and
B .

Generally, if we place a horizontal and a vertical line
segment after each other, the same endpoint can be reached by
a shorter diagonal line segment, thus, as the goal is to minimize
costs, cables cannot contain both horizontal and vertical line
segments. We will use this fact to construct a shortest path.

Starting from A, first we take e vertical, then f horizontal
steps towards B . This path connects A and B , but not in the
shortest way possible. We take one horizontal and one vertical
line segment, and substitute these two with one diagonal
line segment, then repeat this as many times as possible.
Afterwards we will have min(e, f ) diagonal, and | f −e| either
horizontal or vertical line segments: horizontal if e < f , vertical
if e > f , and neither if e = f . Starting from A, we place
these line segments after each other, such that each added line
segment brings the cable’s endpoint closer to B , otherwise,
the path would not be the shortest possible. This way, the
last line segment successfully reaches B . Note that the order
of the line segments is irrelevant, as either way, we reach
the same endpoint B . We consider the construction where the
diagonal line segments are placed first, forming one longer line
segment, then the vertical/horizontal line segments are added,
again forming one longer line segment. As an example, see



the blue path in Fig. 4. Each cable that contains a vertical line
segment can be converted to a cable with a horizontal line
segment, by rotating it about point A, by π/2 - the length of
the cable, and the Euclidean distance between A and B remains
the same. Therefore, it is enough to consider solutions without
a vertical line segment (just as in Fig. 4).

To find the greatest possible error, we need to maximize the
ratio between the grid-based and Euclidean cable lengths:

L =
p

2 ·e + ( f −e)√
e2 + f 2

(1)

Let β denote the angle between AB and the horizontal
distance between A and B ( C B ). As e = tan(β) · f , we can
substitute e to tan(β) · f in the above expression:

L = ((
p

2−1)tanβ+1) · f√
(tan2β+1) · f 2

(2)

As f > 0 and cosβ> 0 for all possible angles in a triangle,
thus

√
tan2β+1 = 1

cosβ , the value of L is the following:

L = (
p

2−1)sinβ+cosβ (3)

To find the maximum value of L, we need to find β such
that L′, the value of the first derivative with respect to β is 0:

L′ = (
p

2−1)cosβ− sinβ= 0 (4)

Knowing that 0 < β< π/2, the only solution in this domain
is exactly at β= π/8.

From AC D triangle we know that C D A angle is π/4,
therefore ADB angle is 3·π/4. As β = π/8, D AB angle also
has to be π/8. Therefore ABD is an isosceles triangle, and
f = (

p
2+1) ·e. Thus, if β= π/8,

L = (
p

2−1)sinπ/8+cosπ/8 ≈ 1.0824 (5)

Note that e and f are integers because they connect the
center points of grid cells. There are no possible integer values
for f = (

p
2+1) ·e, therefore, in practice, the exact maximum

(more precisely, supremum) error cannot be reached. On the
other hand, for instance, if f = 169 and e = 70, conversion
to the grid results in a close approximation to the maximum
error, with only ∼ 6.042 ·10−11 difference.

We note that, as also indicated in [18], this maximum
error can be decreased by enabling additional cable directions,
however, it further complicates the optimization problem.

B. Adding a single edge is NP-hard if the disaster can be any
set of points

In this subsection, we will show that the NP-hardness proof
in Theorem 1 of [18] is not valid if a disaster must be a
connected set of points. The proof is based on a Karp reduction
from a Boolean satisfiability problem (3-SAT) instance. The
3-SAT instance is a Boolean formula of k clauses, where each
clause contains exactly three literals. For each variable x of the
3-SAT instance, two disasters are assigned, one corresponds to
literal x, and the other is literal ¬x. The problem is mapped to

a grid with 3 rows where each clause corresponds to a column.
The 3 cells of each column correspond to 3 disaster sub-
regions assigned to the corresponding literals. For example,
the set of disaster sub-regions assigned to literal x2 on Fig. 2.
of [18] is the set of cells named x2, which are isolated cells.
We do not see any modification to the proof to ensure that the
set of disaster sub-regions are connected.

V. FUTURE WORK

The NP-hardness proofs presented in this paper do not work
if the original graph is not empty, we exclude grid graphs
or ‘small’ disaster radii. Thus, for a better understanding of
the complexity landscape of the disaster resilient network
extension problems, among others, we will investigate the
complexity of problem formulations of [18], [16], and of
[17], including variants NA, GNA, NE, and GNE, in case of
different graph classes and a wider possible range of disaster
radii.

VI. CONCLUSIONS

This paper focuses on the problems of how to extend a
network topology to become more resilient against disasters.
We have investigated different mathematical models of the
problem, where each captures a unique aspect. In the first
model, the aim was to provide a worst-case analysis of
extending the topology with minimal total cable length. Here
several subproblems can be solved with a polynomial-time
algorithm. We have shown that the problem is NP-hard if links
can be added, and remains NP-hard if nodes can be added
besides the new links. We have also discussed the limitations
of a more complex version of the problem, where the goal is to
find the cost-optimal extension as a compromise with the level
of protection against disasters. In this case, very detailed input
data is needed, such as the historical data on the disasters and
the cost of implementing new cable routes at each location.
We have shown that no matter how precise the input data is, in
the case of uniform cable implementation cost, we have to deal
with an at most 8% of imprecision of the result because of the
discretization of the topology map. This paper is a further step
in understanding what type of network extending problems can
be solved efficiently.
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