
Programmable Real-time Scheduling of
Disaggregated Network Functions

Tamás Lévai, Balázs Vass, Gábor Rétvári

Abstract—Novel telecommunication systems build on a cloudi-
fied architecture running softwarized network services as disag-
gregated virtual network functions (VNFs) on commercial off-the-
shelf (COTS) hardware to improve costs and flexibility. Given
the stringent processing deadlines of modern applications, these
systems are critically dependent on a closed-loop control algorithm
to orchestrate the execution of the disaggregated components. At
the moment, however, the formal model for implementing such
real-time control loops is mostly missing.

In this paper, we introduce a new real-time VNF execution en-
vironment that runs entirely on COTS hardware. First, we define
a comprehensive formal model that enables us to reason about
packet processing delays across disaggregated VNF processing
chains analytically. Then we integrate the model into a gradient-
optimization control algorithm to provide optimal scheduling for
real-time infocommunication services in a programmable way. We
present experimental evidence that our model gives a proper
delay estimation on a real software switch. We evaluate our
control algorithm on multiple representative use cases using a
software switch simulator. Our results show that our algorithm
can optimize the disaggregated network for real-time processing
requirements at the millisecond granularity in just a few control
periods.

I. INTRODUCTION

Current and upcoming telecom networks, such as 5G and
O-RAN [1], rely on software-defined networks and virtual
network functions (VNFs). These technologies enable rapid
and flexible development of network applications, bringing
new real-time industrial applications, such as remote operation,
which seemed unfeasible a few years ago, within reach. There
is a strong demand for these applications from both telecoms
and manufacturing companies. A common feature of these new
applications is that they impose stringent requirements on the
network. For example, Augmented Reality (AR) applications
require both 10 ms end-to-end delay and Gbits-scale bandwidth
for media streaming [2]. Since this includes the media process-
ing time on the endpoints, data plane can use only a small
fraction of the time budget. Similar stringent requirements are
also imposed by the 5G core network, where the end-to-end
latency is 5-10 ms [3]. There is a significant transmission delay
(e.g., due to physical distribution) and processing time, which
makes only a fraction of time available for the software data
plane. On the extreme, an industrial robotic arm motion control
leaves a one-way delay between endpoints of 250-1000 µs [2].
It is therefore important for the data plane that the transmission
is fast and the traffic of critical applications is real-time.

Tamás Lévai, Balázs Vass, and Gábor Rétvári are affiliated to the Budapest
University of Technology and Economics (BME), and HUN-REN-BME
Information Systems Research Group. Balázs Vass is also affiliated to Babes, -
Bolyai University, Cluj Napoca, Romania. This work was partly supported
by Project №135606 ANN_20, which has been implemented with support
from the National Research, Development and Innovation Fund of Hungary.
Supported by the ÚNKP-23-4-II-BME-345 New National Excellence Program
of the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund.

Unfortunately, software VNFs running on commercial off-
the-shelf (COTS) hardware usually cannot meet such firm
requirements, which leads to unpredictable delay and through-
put [4]. The main problem is that reasoning about performance
in software is much more difficult than modeling hardware
performance [5], [6]. A brute force solution is to simply allocate
more CPU cores and hope for the best.Given the firm delay and
cost-efficiency requirements, however, this naïve approach is
not sustainable. Another potential approach is to offload VNF
processing to dedicated hardware (e.g., [7], [8]). Requiring
specialized hardware, however, limits flexibility and feature
velocity. Recently there has been substantial work towards
defining AI and ML workflows to realize real-time control
loops [1], [9]; these solutions, however, do not make it possible
to reason about performance analytically and still only exist
as prototypes. In general, viable frameworks for implementing
real-time programmable control loops are still missing [1]–[3],
[10], [11]. We aim to fill this gap in this paper.

Our main contributions are a model for real-time VNF
scheduling and a formal model-based closed-loop schedul-
ing algorithm, which can guarantee the strict service-level
objectives (SLOs) required to implement real-time control
loops with a precision similar to hardware. The key of our
design is a programmable real-time software switch running on
COTS hardware, installed with an operating system with kernel-
bypassing network stack (e.g., Intel DPDK). Complex network
functions and applications are implemented by manipulating
the packet processing pipeline of the software switch. We
observe that real-time software data processing is entirely
contingent on the CPU scheduler. Consequently, we tackle
two important problems: i) resource allocation: decompose the
packet processing pipeline into scheduling units (tasks) and
allocate each task to a CPU core, and ii) optimal scheduling:
compute the optimal share of CPU resources each task should
receive to meet SLOs. Particular contributions are as follows.
Analytical Model: We give a model (§II and §III) that allows
to formally reason about the rate and delay in disaggregated
VNF service chain. The model is validated and fine-tuned in
a real software switch. The model is extendable for multi-
switch case to guarantee end-to-end performance guarantees
for services spanning over multiple switches.
Scheduler Control: We introduce a model-predictive controller
(§IV) that adjusts the software switch scheduler to meet any
given SLOs at millisec granularity. We present a gradient-
optimization-based control algorithm to optimally distribute
CPU fair-queuing scheduling weights to guarantee rate and
delay SLOs of services.
Numerical Evaluation: We validate our model with measure-
ments executed on the Berkeley Extensible Software Switch
(BESS) [12]. Using a custom simulation environment (§V),
we demonstrate the effectiveness of our solutions in synthetic

examples and realistic cellular network use cases (§VI).
We close the paper by discussing the related work (§VII)

and deriving the conclusions (§VIII).

II. BACKGROUND, CHALLENGES AND SYSTEM MODEL

Our main goal is to define a formal framework for implement-
ing real-time control loops for disaggregated network functions
(NFs). The key of our design is a programmable real-time
software switch running on COTS hardware, which schedules
the execution of the NFs and runs a fast packet processing
pipeline as a communication substrate between functions. Real-
time execution is enforced by integrating the pipeline into a
closed control loop that adjusts the scheduling of each function,
so that the end-to-end processing chain meets the delay and
rate SLOs imposed by the operator. Real-time control in this
context boils down to deciding a) how much CPU power is
needed per function so that each processing chain receives
exactly the requested end-to-end SLOs; b) how to allocate
functions to CPUs and set scheduling weights so that no CPU
is overburdened, and c) how to dynamically track changes in
input packet rate and/or delay SLOs.

Answering these questions is not trivial due to the sheer
amount of system parameters. On the hardware level, the
execution is affected by the CPU and the memory models (e.g.,
L1-L3 caching, NUMA, memory contention, branch prediction,
etc.) [13]. On top of this, the operating system adds additional
unknowns: interrupts, the CPU scheduler, etc. Moreover, all of
these unknown system parameters are hidden during execution,
only the high-level parameters are observable.

We overcome this limitation in two steps. First, we assume
a static setting. We manually decompose the VNFs to tasks,
where each task is defined as the smallest unit of execution
our scheduler can run. Given this decomposition, we define an
optimal control algorithm to compute weighted-fair-queuing
(WFQ) scheduling weights so that all queues in the system are
drained fast enough to keep latency below the delay-SLOs, and
each module is executed enough times to process total of the
rate-SLOs. In the next step, we adapt our optimal scheduler
to a dynamic setting where resource allocation is optimized
online, always updating the previous state of the system in
response to the changes in input traffic rate, and/or the SLOs.
We envision real-time scheduling control loop, in which a
model-predictive controller adjusts the scheduling weights of
the running system in concert with current demands. This
model follows state-of-the-art design [1], [14], [15].

A. Dataflow Graphs and Scheduling

Software switches for running disaggregated network func-
tions (FastClick [16], BESS [12], etc.) are usually designed
as a dataflow-graph runtime. This model is much akin to
TensorFlow for ML or GStreamer for multimedia.

In this model, modules (or nodes) represent packet process-
ing functions (i.e., VNFs). At the most basic level, each module
implements a single processing primitive, like parse/deparse,
match/action, filter/queue, which can then be freely combined
into a meaningful high-level pipeline. At a higher level,
modules can each implement complex network functionality;
for instance, a L3 router, data plane of a 5G mobile gateway,
etc. Our framework is completely agnostic to the choice of
modules. Control-flow is represented by linking modules with

edges into complex network function chains, with each edge
connecting an outgate of an upstream module to an ingate of a
downstream module. A packet batch placed by the upstream to
the outgate will appear at the corresponding downstream ingate
immediately. Modules and edges form the dataflow graph.

VNF chains are abstracted as flows in our model, where
each flow is a path from the flow’s ingress module to the egress
module and service SLOs are defined over this end-to-end path.
Software switches implement multi-level hierarchical scheduler
with the scheduling loops working in tandem. At the upper level,
each CPU core runs a scheduler that is responsible for picking
the next schedulable unit (called a task) on the given CPU core
to execute next. Two common strategies are round-robin (equal
share) and weighted-fair-queuing (WFQ, weighted share) [17].
CPU schedulers may operate in different resource domains
(e.g., CPU cycles, batch count, or packet rate). Each task forms
a scheduling unit, comprising a connected rooted sub-graph of
the dataflow graph with the root module being a schedulable
module (e.g., a NIC RX/TX queue) that can be executed by
the scheduler. At lower level, the task’s input module drains
the queue and automatically executes the rest of the task’s
pipeline in non-preemptible mode (run-to-completion).

B. System Model

We model the dataflow graph with a directed graph
G(V,E), where v∈V represent the modules and dependencies
between modules are modeled by arcs (i, j) ∈ E. For each
module v∈V its per-module processing cost cv denotes the
number of CPU cycles needed to process a single packet
through module v ∈V , measured in [cycle/pkt]. We assume
for now that the module costs are given (we relax this later).

Each flow f is represented by a tuple of the following: di-
rected path pf through G, offered packet rate ρf [pkt/sec], rate-
SLO (requested rate) Rf [pkt/sec], and delay-SLO Df [sec].
The set of flows is denoted with F . Each task Gt(Vt, Et) : t∈T
is a connected subgraph of G with a single input queue. Let
Ft⊆F be the set of flows traversing subgraph Gt, let pt,f be the
path of a flow f ∈Ft through Gt, let πf ={(t1,t2),(t2,t3),...}
be the ordered sequence of task pairs traversed by f , and let
sf be the input task for f .

We assume there are S workers (i.e., CPU cores) available
to run the packet processing pipeline. The set of tasks assigned
to the i-th worker is denoted as Si={ti,1,ti,2,...}; these tasks
share the CPU time budget Ti of the worker (e.g., Ti=2.4·109
cycle/sec for a 2.4 GHz CPU). For a task t, let it denote the
CPU that runs t. Furthermore, for each task t, wt denotes its
task scheduling WFQ weight, defining the share of CPU time
task t receives at its worker. For each worker, we normalize
weights to 1:

∑
t∈Si

wt=1, wt≥0.
Fig. 1 depicts a sample packet processing pipeline taken

from [18] along with two different settings of scheduling
weights, each yielding different packet processing performance.
Namely, one of the settings is feasible while the other is not.
The dataflow graph consists of 3 tasks, where per-module
processing cost cv for the modules in task1 is 2 units and
for the modules of task2 is 1 unit, while task0 modules have
negligible cost. The flows are defined as follows : flow1 goes
from NIC1 to NIC2 via task0 and task1, while flow2 goes from
NIC1 to NIC3 across task0 and task2. Here, flow1 requests a
rate-SLO of at least R1=1/3 units and a delay-SLO of at most

Queue Module

Task 1 NIC 2

Task 2
Queue Module NIC 3

Task 0

ModuleModuleNIC 1

Dataflow Graph

Figure 1. Example Pipeline (see [18]).

D1=5 units, while flow2 requests R2=1/5 and D2=6. There
is a single worker. First, consider a scheduling regime where
task1 and task2 receive equal CPU share (i.e., w1=w2= 1/2).
Intuitively, flow1 is restricted to w1/c1=1/4<R1 units rate which
violates the requested rate-SLO, despite that the worst-case
delay c2/w2+c1/w1=4+2>D1 meets the delay-SLO. Meanwhile,
flow2 meets its SLOs and there is some slack remaining: it
gets 1/2 units rate, and 4+1=5 units delay. Second, consider
an unequal CPU scheduling where we reallocate the resource
slack from the second task to the first one. With CPU shares
of w1=4/5 and w2=1/5, flow1 receives 2/5>R1 units of packet
rate and 2/ 4

5
+2<D1 delay, and flow2 gets 1/5=R2 rate and

5+1=D2 delay, both meeting requested SLOs.
C. Problem Statement

This intuitive example shows that allocating the limited CPU
resource share to executing each task has critical impact on
end-to-end processing rates and delays. The main task here is to
control the CPU share via WFQ scheduling weights in order for
each flow (i.e., NF chain [19]) to meet its requested rate-SLO
and delay-SLO. Our model uses static resource allocation.

Problem 1 (Feasible scheduling): Given a set of static task
graphs Gt and a fix allocation of tasks to workers Si, compute
scheduling weights wt so that rate-SLO Rf and delay-SLO
Df is satisfied for each flow f ∈F .

III. AN OPTIMAL SCHEDULING ALGORITHM

In the following, given a static resource allocation we define
an ideal scheduler for optimal module execution scheduling in
a dataflow graph under delay and rate SLOs.
A. Assumptions

First, we assume certain parameters are known, constant and
observable; the intention is to see whether the problem is at
least theoretically solvable under very strong (and unrealistic)
assumptions. Later on, we will relax the assumptions that prove
detrimental in an implementation.

Assumption 1 (Unsplittable flows): Each flow takes only a
single path through G. If a flow is split (e.g., for load-balancing)
across multiple paths, we add each possible path as a separate
flow with properly adjusted SLOs to the system.

Assumption 2 (Lossless modules): There is no internal packet
loss and/or packet drops inside the modules of the pipeline.
To be consistent with Assumption 2, dropped packets can be
directed to a dedicated loss gate.

B. Delay Estimation

In order to fulfill the delay-SLOs, we need a formal delay
estimation for each flow. First, we introduce some additional
notation. For flow f at task t∈ T , we denote the flow rate
with rt,f [pkt/sec]. Again, we assume rt,f is known, and
later we will relax this assumption. The per-task processing
cost τt,f [cycle/pkt] for flow f at task t (where f ∈ Ft) is
defined as the number of CPU cycles needed to process one

packet of f through t. Observe that τt,f =
∑

v∈pt,f
cv. The task

processing time θt [cycle/pkt] measures the average number
of CPU cycles a task t ∈ Si needs to process a single packet:
θt=

∑
f∈Ft

rt,f τt,f∑
f∈Ft

rt,f
=

∑
f∈Ft

(rt,f
∑

v∈pt,f
cv)∑

f∈Ft
rt,f

. The per-batch task
processing time Bθt [cycle] denotes the average number of
CPU cycles t∈Si needs to process a single batch of packets,
where B [pkt] is the (constant) batch size. In addition, Q
[packet] will denote the maximum queue size.

Using this notation, the delay for flow f is the sum of the
delays at each task t traversed by f . The per-task delay of the
flow is estimated by the sum of the queuing delay in the task’s
input queue plus the processing delay required to process a
packet of f through the pipeline along path pt,f . To compute
these terms, we need the following lemma.

Lemma 1: Given a stride-based WFQ scheduler [17], the
time between two consecutive runs of a task t equals Bθt

Titwt

on average.
Proof: We start with the notations of [17], with time

quantum and stride scaled to: quanta=1, stride1=1. We turn to
our notations meanwhile, with: tickets(t)=wt, quanta(t)=θt.
By definition, for any task t ∈ Si, Pass(t) = #scheduled(t) ·
stride(t)·quanta(t)quanta =#scheduled(t) · stride1

tickets(t) ·
quanta(t)
quanta =

#scheduled(t)· θt
wt

(Eq. Pass). Also, with time, Pass(t)
Pass(t′) →1, for

any t′∈Si (Eq. infty). With this, the timeshare a task t gets is:
#sched(t) · quanta(t)quanta∑

t′∈Si
#sched(t′) · quanta(t

′)
quanta

=
#sched(t) · θt∑

t′∈Si
#sched(t′) · θt′

=

Eq. Pass
=

Pass(t) · wt∑
t′∈Si

Pass(t′) · wt′

Eq. infty→
wt∑
t′ wt′

=
wt

1
= wt.

Thus, the time accumulates for task t to run once in θt/wt.
Let us compute the queuing delay first, assuming that each

task t receives its fair share of CPU (i.e., proportional to wt).
In this case a packet may need to wait Q/B turnaround times
to be drained from the input queue. Observing that an average
scheduling turn takes Bθt

Titwt
secs (Lemma 1), the queuing delay

for flow f at task t : f ∈ Ft equals Q
B

Bθt
Tit

1
wt

= Qθt
Tit

1
wt

[sec].
However, in certain cases a heavy-weight task t′ may occupy
the CPU for an extended time, starving the rest of the tasks.
In such cases, the queuing delay of each remaining task t ̸= t′

equals the amount of time t has to wait until t′ finishes running
(recall, there is no preemption inside tasks) and yields the CPU:
maxt′∈Si:t′ ̸=t B · θt′/Tit [sec]. The queuing delay is then the
maximum of the above two expressions.

Modeling the packet processing delay is simpler: the average
packet processing delay for flow f at task t equals the cost of
processing a batch of size B, through the pipeline of t each
time t is scheduled: B θt

Tit
[sec].

Hence, the estimated total delay of flow f at task t is: dt,f =
max

{
maxt′∈Si:t′ ̸=t

(
B

θt′
Tit

)
,Q
B

Bθt
Tit

1
wt

}
+B θt

Tit
. In the sequel, we

will use this delay estimation in our models; we will justify
the model empirically later in §VI-A.

C. Rate Estimation

In order to fulfill the rate SLO for each flow, each task must
be allocated enough CPU time so that it can process all its
offered load. Clearly, the offered load for task t is at most the
sum of the offered packet rates of the flows that traverse the
task:

∑
t∈Ft

rt,f . We also know that the amount of work to be
done at task t for each packet of f is τt,f =

∑
v∈pt,f

cv . The
total CPU share allocated to t is wt, and this must be larger than,

or equal to the CPU time needed to process the total offered
load of t, which, based on the former, yields the following
constraint: 1

Tit

∑
f∈Ft

rt,fτt,f ≤ wt. This estimation is true
only as long as there is no packet drop in the pipeline (recall our
assumptions), i.e., as long as flow conservation holds. For this,
the producers (upstreams) of a task cannot generate more traffic
than what the sinks (the downstream task) can process; formally:
rs,f =rt,f : f ∈ F, (s, t)∈πf and rsf ,f =ρf . W.l.o.g., we sum
these constraints for each flow in the task to get a per-task
constraint:

∑
f∈Ft

∑
s:(s,t)∈πf

rs,f+
∑

f :sf=t ρf =
∑

f∈Ft
rt,f ,

for all t ∈ T, where the term
∑

f :sf=t ρf accounts for the
offered rate of the flows f that enter the pipeline at t. This will
be useful later when we satisfy the feasibility constraint by
enabling back-pressure in BESS, since BESS does not support
per-flow back-pressure (like NFVnice [20]).

D. Feasible WFQ Scheduling Control

We are now in the position to formulate an optimization
problem to answer Problem 1. Given dataflow graph G, flows F
with rate-SLOs Rf and delay-SLOs Df , and resource allocation
(Gt, Si), and supposing that cv : v ∈ V are known with
τt,f :=

∑
v∈pt,f

cv , the task is to compute WFQ task weights
wt so that the constraints (1)–(5) below are satisfied.∑

t:f∈Ft

(
max

{
max

t′∈Si:t′ ̸=t

(
B

θt′

Tit

)
,
Qθt
Tit

1

wt

}
+B

θt
Tit

)
≤ Df , ∀f ∈ F

(1)

∑
f∈Ft

rt,fτt,f ≤ wtTi, ∀t ∈ Si, ∀i ∈ [1, S] (2)∑
f∈Ft

∑
s:(s,t)∈πf

rs,f +
∑

f :sf=t

ρf =
∑
f∈Ft

rt,f , ∀t ∈ T (3)

∑
t∈Si

wt ≤ 1, ∀i ∈ [1, S] (4)

wt ≥ 0, rt,f ≥ min{ρf , Rf}, ∀t ∈ T, f ∈ F. (5)

IV. A PRACTICAL REAL-TIME SCHEDULER

Unfortunately, the ideal system to solve Problem 1 is difficult
to apply in practice. First, it assumes a static resource allocation.
Second, it depends on the module costs cv (v ∈ V) that are
either not known or may vary with the workload, configuration
of v, etc. Third, we cannot measure parameter τt,f and flow-
rates rt,f directly from the running pipeline. Fourth, even if we
could, constraint (1) is a non-convex function of rt,f , which
is hard to optimize. Fifth, the system tries to track the offered
rate ρf even if ρf >Rf . To overcome these difficulties, below
we simplify the ideal system step-by-step until we arrive to a
convex formulation with all the remaining parameters easy to
be measured from the running system. This simplified system
will then lend itself readily to a fast online algorithm. As a next
step we will present an actual online optimization algorithm
for this purpose to tackle Problem 1.

A. A Simplified Model

Back-pressure: An apparent problem is that constraint (3) must
be enforced at a packet-by-packet basis, and this dynamics
may be difficult to track from the scheduler. Back-pressure is
an in-band method to enforce flow conversation [20], which
automatically blocks upstream module execution when some
downstream gets overflown (i.e., then the input queue of a
downstream module gets a backlog greater than a predefined
watermark). Enabling back-pressure we automatically satisfy
(3) so we can remove this from the model, allowing to treat

the flow rates rf = mint:f∈Ft
rt,f as constant. This also has

the benefit that we no longer need to measure the input rate
ρf from the running system and now the task processing times
θt = const can be directly measured from the pipeline.
Constant rate: Another problem is that, by (1), the queuing
delay is non-convex in variables rf . To overcome this problem,
we will assume that the dynamics of the input traffic is such
that the rate of flows can be considered constant inside a
control period. Earlier work showed that this assumption is
generally true when the control period is small enough (e.g.,
below 10-100 ms) [14], [15]. Now, rt,f is no longer a variable
to be optimized but a parameter to be measured from the
running system. Then, since θt is now constant, non-convexity
vanishes from (1). Below, we will use the shorthand notation
rt :=

∑
f∈Ft

rt,f to denote the total packet rate of task t.
Dualization: A third issue is that without a precise measure-
ment on τt,f , we cannot decide if (2) is satisfied. To tackle this
problem, we dualize (2) by moving it to the objective and using
the queue size as dual. The idea is that if (2) is tight for a task
t then the queue size (i.e., the dual λt) grows, so we increase
the CPU share wt. Note that λt is not the usual Lagrangian
dual, but rather a parameter (queue size) we measure from the
system. The simplified system at this point:

min
∑

i∈[1,S]

∑
t∈Si

λt

(
1

Ti

∑
f∈Ft

rt,fτt,f − wt

)
(6)∑

t:f∈Ft

(
max

{
max
t′∈Si:
t′ ̸=t

(
B

θt′

Tit

)
,
Qθt
Tit

1

wt

}
+B

θt
Tit

)
≤ Df , f ∈F (7)∑

t∈Si

wt ≤ 1 i ∈ [1, S] (8)

wt ≥ 0 t ∈ T. (9)

Ignore processing delay: The delay at task t comprises the
queuing delay plus the time needed to process the packet
through t. In general, however, the queuing delay usually
dominates the processing delays by 1-2 orders of magnitude
[14]. Thus, we will omit all the components from (7) except for
queuing: Q θt′

Titwt
. This has the additional benefit that another

difficult-to-measure parameter τt,f disappears from the model:

min
∑

i∈[1,S]

∑
t∈Si

−λtwt (10)∑
t:f∈Ft

Qθt
Tit

1

wt
≤ Df f ∈ F (11)∑

t∈Si

wt ≤ 1 i ∈ [1, S] (12)

wt ≥ 0 t ∈ T (13)

Enforce delay SLOs in the objective: Most interior point
solvers will have trouble to account for the infeasibility possibly
introduced by a violation of the delay constraint (11). To
address this issue, we represent (11) with a linear penalty
function: P (f)=αmax

[
0,
∑

t:f∈Ft

θtQ
Titwt

−Df

]
. Here, α≥0

is a tunable parameter: the higher α the more we optimize
for the delay. There is no penalty when the schedule complies
with the delay-SLO and the penalty rapidly increases with
infeasibility. Let the new objective function L(w) be the sum
of the latest objective (10) and, for all flows f , the newly
introduced penalty P (f). Finally, based on the following
Claim 1, we can and will rewrite (12) into equality form.

Claim 1: We can rewrite (12) with equality without modify-
ing the optimum of L(w).

Proof: Suppose indirectly that there is no optimal solution
where the task weights on each worker add up to 1. Take an

Algorithm 1: Projected Gradient Method for a Worker
Input: ∀t ∈ Si, λt and θt given, and wt[1] = 1/|Si|

1 Find: argmin{Li(w)|w ≥ 0,
∑|Si|

t=1 wt = 1}
2 k := 1
3 for t ∈ {1, . . . , |Si|} do

−∇Li(wt[k]) := λt +
1

wt[k]2
1

Tit
· αθt · |{f ∈ Ft : DF > dF }|

4 d[k] := −(I − 1
|Si|

1)∇Li(wt[k])

if d[k] ̸= 0 then
get optimal ν[k] by Alg. 2

5 w[k + 1] := w[k] + ν[k] · d[k]; k := k + 1
else return w[k]

optimal solution w of (14). For each worker i, assign new
weights for the tasks of i: w′

t = wt/
∑

t∈Si
wt, for all t ∈ Si.

Observe that the new task weights add up to 1 on each worker.
Also, weights w′

t are strictly greater than the old weights wt,
thus the objective function value either decreases or stays the
same, since: (∆w)t = −∂L(w)

∂wt
= α

∑
f∈Ft:df>Df

θtQ
Tit

1
w2

t
+λt ≥ 0.

The former two observations yield a contradiction.
The final simplified model for answering Problem 1 is as

follows, with the objective function denoted by L(w):

min

(
α
∑
f∈F

max

0,∑
t:f∈Ft

θtQ

Titwt
−Df

− ∑
i∈[1,S]

∑
t∈Si

λtwt

)
(14)

∑
t∈Si

wt = 1, ∀i ∈ [1, S]; wt ≥ 0, ∀t ∈ Si (15)

B. A Model-predictive Scheduler Controller

In this section, we discuss an optimization algorithm to
solve the simplified system model (14)–(15). Our optimization
algorithm will apply the projected gradient method, using the
(negative) gradient of the objective:

(∆w)t = −∂L(w)

∂wt
= α

∑
f∈Ft:df>Df

θtQ

Tit

1

w2
t

+ λt.

Here, θt can be measured from the data-plane as the total
CPU consumption of task t divided by the total input packet
rate rt (thus, we do not need flow delay df and flow-rate rf).
In addition, let λt∈{0, 1} be a binary parameter accounting
for the queue size at t. We set λt as follows: if there exists
f ∈ Ft : rt,f ≤ (1− δ)Rf (where e.g. δ=0.01 is a tolerance)
and the queue size for t is above the high-watermark then we
set λt=1; otherwise if the queue size for t is below the low-
watermark we set λt=0. Observe that (∆w)t is non-negative
for any task t. Intuitively, each task is “greedy”, constantly
requesting more CPU share to process more packets with lower
latency. Allowing less critical tasks to give up CPU share, for
each worker i we project the gradients of tasks assigned to i
into hyperplane

∑
t∈Si

(∆w)t=0 and perform a line search.
We can now utilize the convergent version of Rosen’s

projected gradient method [21, pp. 593-601] to solve the model.
In Alg. 1, the outer cycle ensures an iterative updating of the

weights w along the projected gradient. Here, for any column
n-vector x, y=Px=(I− 1

n1)x is an orthogonal projection of
x to the hyperplane 1Tx=0, where 1T is a row n-vector of all
ones and 1 is an n× n matrix of all ones. The modified line
search (polyline search) along the projected gradient is detailed
in Alg. 2. Here, the maximum step size νmax may be a static
constant. Constant νinc is introduced to ensure that no weight
exceeds 1, while νwless re-ensures that no weight drops below
0 to conform to (15). In fact, νwless ensures that no weight
drops below ϵ (a small positive constant), which enforces the
intuitive observation that letting wt∼0 the delay of the flows
traversing t would skyrocket. Value νpdec plays a similar role:

Algorithm 2: Modified Line Search (Polyline Search)
Input: w[k], d[k], ϵ, ns, νmaxstep, for each task t : λt

1 Φ := Si; δ := 0; w := w[k]; M := ∅
2 dΦ : vector of coordinates of d[k] corresponding to free tasks

while δ < νmaxstep and |Φ| ≥ 2 do
3 νinc := min{1−wt/dt|dt > 0, t ∈ Φ}
4 νwless := min{wt/−dt|dt < 2ϵ, t ∈ Φ}
5 νpdec := min{wt/−2dt|dt < 0, t ∈ Φ}
6 νmax := min{νinc, νpdec, νwless, νmaxstep − δ}
7 add to M this: argmin{Li(wk + ν · dk)|ν ∈ [0, νmax]}
8 remove blocked tasks from Φ
9 recalculate dΦ, dΦ := (I|Φ| − 1

|Φ|1Φ)dΦ
10 δ := δ + νmax; w := w + νmax

return argminM

to prevent overly steep dynamics, saves half of the weight
of each task in each iteration. Let Fi denote the set of flows
traversing worker i and let ns denote the number of equidistant
points the line search visits. We claim without proof Prop. 1,
showing that our optimization algorithm in each iteration either
claims optimality, or departs towards the optimum.

Proposition 1: In each step, Alg. 1 either terminates at a
KKT point or else it generates an improving feasible direction.
The time complexity of each step is O

(
|Si|2|Fi| · ns

)
.

Note that if there are multiple workers, then the total complexity
of a control loop is O

(
ns ·

∑
i∈[1,S] |Si|2|Fi|

)
.

V. SIMULATOR

We created a discrete time simulator to experiment with
our controllers. The simulator workflow is the following. We
initialize the simulator with the given system G, Gt, Ti, cv
and flows f = (pf , ρf , Rf , Df), f ∈ F , and we choose a set
of initial task weights wt : t ∈ T . Then, the following steps are
repeated by the simulator in each iteration: (1) run the system
model detailed in §II-B to produce the system state and then
(2) run the optimizer to compute optimal wt with respect to
the system state. Given weights wt for each task t, the state of
the system can be obtained as follows. First, compute per-task
packet rates rt,f by solving the following linear program:

max
∑

f∈F
rf (16)∑

f∈Ft

rt,fτt,f ≤ wtTit t ∈ Si, i ∈ [1, S] (17)

rs,f = rt,f f ∈ F, (s, t) ∈ πf (18)
rf = rsf ,f f ∈ F (19)

0 ≤ rf ≤ ρf , rt,f ≥ 0 t ∈ T, f ∈ Ft. (20)
Then, determine per-packet task delays as: θt =∑
f∈Ft

rt,fτt,f∑
f∈Ft

rt,f
. Finally, compute the flow delays: df =∑

t:f∈Ft

(
max

{
maxt′∈Si:t′ ̸=t

(
B

θt′
Tit

)
, Q
B

Bθt
Tit

1
wt

}
+B θt

Tit

)
.

In an actual implementation, the "back-pressure" signal λt

could be measured from the running system (recall, we have
to set λ = 1 whenever the queue size would be above the
threshold); unfortunately in our simulator, we have to obtain this
parameter from the system model. A task t is stressed if, given
its CPU share wt, it does not have enough compute resources
to process all the traffic it receives. Based on this, we use the
following rule: after solving (16)–(20) set λt=1 for t∈T if task
t utilizes all its CPU share wtTit :

∑
f∈Ft

rt,fτt,f ≥(1−δ)wtTit ,
and there is demand for more traffic: min(Rf , ρf)≥(1−δ)rf ,
where δ is again a tolerance, e.g., δ=0.01.

At this point, we have all the parameters available to run
the model: we execute a single step of the projected gradient
algorithm (Alg. 1) followed by a single line-search (Alg. 2) to

0 200 400 600 8001,000

105

108

1011

Task1 Weight

Ta
sk

1
D

el
ay

/E
st

.[
ns

]

Task1 P50
Task1 P95
Task1 P99
Task1 Est.

02004006008001,000
104

105

106

107

Task2 Weight

Ta
sk

2
D

el
ay

/E
st

.[
ns

]

(a) Fast Task 1

0 200 400 600 8001,000

Task1 Weight

02004006008001,000

Task2 Weight
(b) Equal Times

0 200 400 600 8001,000

Task1 Weight

02004006008001,000
104

105

106

107

Task2 Weight

Task2 P50
Task2 P95
Task2 P99
Task2 Est.

(c) Slow Task 1

Figure 2. Validating Delay Estimate: Example Pipeline (Fig. 1) implemented
in BESS with Task 2 execution taking 10k CPU cycles while Task 1 execution
time varies: (a) 100, (b) 10k, and (c) 10M CPU cycles. Note: task weights on
x-axes follow the BESS weights notation where wt = 1 requires 1000 units.

obtain new weights. The simulator then goes back to obtaining
the system state with respect to the new scheduling weights,
and this loop is repeated until total system time surpasses a
given limit. We implemented the simulator in Python [22].

VI. EVALUATION

We evaluated our real-time scheduler controller logic in
extensive simulation studies. Since the model critically depends
on the delay estimate (§III-B), first we confirm this estimate on
a real software switch. Then, we present a detailed numerical
evaluation of our controller logic (§IV-B) with the simulator.

We will use synthetic and real-life sample pipelines
from [15], [20] taken from an official 5G benchmark suite
[4] for the evaluations. In particular, for the synthetic tests,
we chose the fork example pipeline of Fig. 1 and a taildrop
pipeline consisting of 3 tasks, from which the last one is
heavyweight [20]. As a real pipeline, we chose the 5G
Mobile Gateway (MGW) from [4]. The pipelines are originally
implemented in BESS, then converted to our simulator. We
assume workers have unit speed, we set B=Q=1, and we
let the line search to make ns=5 tries at each line segment
with a maximum step size νmaxstep chosen as 0.01 or 0.025.

A. Validating the Delay Estimate

A dependable delay estimation is crucial for scheduling
latency-sensitive pipelines. Hence, our evaluation starts with
the validation of the task delay estimate of §III-B. For this
purpose, we implement the fork pipeline (Fig. 1) in a widely-
deployed software switch: BESS [12]. We adjust i) the fan-out
of Task0 (number of tasks connected to the egress module of
Task0); ii) the execution time of Task1; and iii) the ratio of
weights between the egress tasks .

Fig. 2 shows the condensed results (delay estimate and
measured delay percentiles) with two egress tasks (Task1 and
Task2) and task execution times varying in 100, 10k, and
10M CPU cycles as Task1/Task2 scheduling weight ratio is set
between (0, 1]. We find that, except for extreme Task1/Task2
weight ratios, the delay estimate coincides with the 99th

percentile measured delay, with a slight tendency for the model
to overshoot the delay. This confirms that our delay estimate
is a good fit to drive the real-time scheduling control loop.

0.15

0.2

0.25

0.3

0.35

Fl
ow

R
at

e

6

8

10

Fl
ow

D
el

ay

Flow 0 Flow 0 (SLO)
Flow 1 Flow 1 (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

20 40

0

1

L
am

bd
a

Task 0 Task 1 Task 2

(a) Large (α=1.0)
20 40

(b) Small (α=0.05)
Figure 3. Effect of parameter α responsible for weighing in the possible delay
SLO violations, measured on the fork pipeline over 50 iterations.

4

5

6

·10−2

Fl
ow

R
at

e

Flow 0
Flow 0 (SLO)

50

55

60

Fl
ow

D
el

ay

0

0.5

1
Ta

sk
W

ei
gh

t
Task 0 Task 1
Task 2

5 10 15 20

0

1

L
am

bd
a

(a) Taildrop; costs: Task0 &
Task1: 1, Task2: 10.

0
2
4
6
8

0.4

0.6

user0 ul qos
user0 dl qos
user0 ul bulk1
user0 dl bulk1
user1 ul bulk1
user0 dl bulk1
user0 ul/dl qos
(SLO)
user0/1 ul/dl bulk1
(SLO)

0

0.5

1

5 10 15 20

0

1

ingress
egress
bearer0 ul user0
bearer dl 1
bearer ul 1

(b) MGW; single user on QoS and bulk bearers
(uplink/downlink).

Figure 4. Pipelines taildrop and MGW associated with satisfiable SLOs. With
α=1, the controller found a feasible solution in 15 control periods in both
cases.

B. Control Algorithm

Our first round of evaluations focuses on establishing the
viability of the control algorithm and understand the effect of
choosing the optimization parameter α, which, recall, decides
whether the scheduler will favor satisfying the delay-SLOs at
the cost of potentially violating the rate-SLOs (α large) or the
vice versa (α small). Then, we will run the model on more
complex pipelines to understand the control dynamics.

First, we tested our controller on the fork pipeline of Fig. 1.
We deliberately set the SLOs so that there is no way for
the controller to satisfy all: this stresses the controller to the
extreme and allows us to observe the effect of choosing α.

Our results are summarized in Fig. 3. First, we observe that
the controller chooses the task scheduling weights so that in
each step the system is driven closer to the SLOs. This justifies
the basic viability of the model. Second, as it was expected the
lower the value of α the more the controller favors fulfilling
the rate-SLOs at the cost of violating the delay requirements:
for α=0.05 the rate-SLO of both flows and the delay-SLO of
the first flow are all satisfied but the delay-SLO of the other
flow is violated, while for α=1 the delay-SLOs all hold (with
a small error for the first flow) but one of the rate-SLOs is
violated. In the context of real-time applications delay-SLOs
are more important; correspondingly in the below we will use
the setting α = 1 (i.e., favor delay at the cost of rate). Note
that we found an SLO violation in all examples; this is because,
recall, we deliberately set non-fulfillable SLOs. Re-running
the evaluations with looser SLOs we found that our control

algorithm can always drive the system to an SLO-compliant
state in just a couple of iterations (results not shown here).
Interestingly, we find the same “sawtooth pattern” in the control
action that is well-known in typical online controllers [23].

We repeated the benchmark on the taildrop pipeline with a
single flow. Recall, this pipeline comprises a chain of 3 tasks,
the last being the most expensive. Consequently, an equal
weight setting will be suboptimal: the last heavyweight task
will not get enough CPU share to run the costly processing on
all packets fed to it by the preceding lightweight tasks, causing
a so-called taildrop phenomenon where we spend significant
resources processing traffic just to drop it at a later stage in the
pipeline [20]. Clearly, to remedy this, the scheduling weight of
the last task needs to be increased. Fig. 4a shows that this is
exactly what our controller does: starting from approximately
identical initial task weights, it rapidly scales up the scheduling
weight of the heavy task (Task 2) and decreases the weight of
the other tasks. Eventually, at the 14th iteration, all SLOs are
met and internal packet drop disappears (this can be tracked
from observing the queue size signal: when λ=1 there is a
task input queue that is filled to capacity and drops packets).

The last evaluation was performed on a mobile gateway
packet-processing (MGW) pipeline taken from the official 5G
NFV benchmark suite [4]. A 5G mobile gateway connects
mobile user equipments to the Internet. This requires a complex
pipeline with differentiated traffic classes (called “bearers”).
Traffic flows are either uplink or downlink, and are further
classified among bearers. Users may have connections on
multiple bearers both in uplink and downlink direction, and
each user’s connection is considered a separate flow. In our
evaluations, bearer0 (both uplink and downlink) represents
mobile voice and multimedia traffic with firm performance
requirements, while the rest of the bearers are bulk traffic. The
number of concurrent flows is 2× number of users on bearer0
due to separate uplink and downlink connections. The number
of bearers, users, and users of the voice/multimedia bearers
(bearer0 users), as well as the capacity and the number of
CPUs, are parameters. Fig. 4b shows an MGW pipeline with
37 modules organized into 5 tasks and 3 workers: ingress and
egress tasks both have a separate worker, while bearer dl 1,
bearer ul 1 and bearer0 ul user0 tasks share a common worker
(full description in our GitHub repo [22]). Our findings for
this complex benchmark are similar as before: in just about a
dozen iterations the controller settles the system in a fully SLO
compliant state and completely removes internal packet drop.

VII. RELATED WORK

VNF Performance Prediction: Running multiple NFs on a
single host leads to performance degradation due to contention
in shared hardware resources such as last-level CPU cache [24]
or packet I/O [6]. Performance prediction of VNFs is therefore
crucial for guaranteeing SLOs. SLOMO [6] predicts collocated
VNF performance using ML. Bolt [5] leverages symbolic exe-
cution to estimate processing costs of traffic classes processed
by a VNF; also generalized to NF chains. As opposed to our
work, these methods require extensive profiling. We relax the
requirement of known module processing costs in §IV.
Meeting SLOs in NFV Platforms: Besides high performance,
meeting SLOs is a highly-desired behavior of NFV platforms.
Grus [8], an NFV framework with GPU offload, introduces a

multi-layer system with delay prediction model to guarantee
delay-SLOs for single VNF deployments. ResQ [24] provides
performance isolation at CPU last-level cache solving the
noisy neighbor problem of VNFs, and enables enforcing SLOs.
Batchy [14], [15] is a dataflow graph scheduler framework,
which enables enforcing delay-SLOs. Batchy uses controlled
queuing to efficiently reconstruct fragmented batches in accor-
dance with strict SLOs. Contrary to these works, our closed
loop scheduler is built on an analytical system model, without
relying on static performance benchmarks or costly prior ML
training. Our controller can handle both rate- and delay-SLOs.

VIII. CONCLUSIONS

This paper presents a controller framework for real-time
execution of disaggregated services on COTS hardware. The
controller relies on a comprehensive analytical model, com-
bining the formal model with monitoring data to rapidly find
an optimized schedule. We present a model-based gradient-
optimization control algorithm to provide optimal scheduling.
Our evaluation results show that the model predicts delays
reliably and the control algorithm is able to converge the
system to an SLO-compliant state in just a few iterations.
Future work involves dynamically adjusting parameters and
extending the model to multiple switches.

REFERENCES

[1] M. Polese et al., “Understanding O-RAN: Architecture, Interfaces,
Algorithms, Security, and Research Challenges,” Comm. Surveys Tuts.,
p. 1376–1411, 2023.

[2] F. Voigtländer et al., “5G for robotics: Ultra-low latency control of
distributed robotic systems,” in IEEE ISCSIC, 2017.

[3] NGMN Alliance, “5G white paper,” Next generation mobile networks,
white paper, 2015.

[4] T. Lévai et al., “The Price for Programmability in the Software Data
Plane: The Vendor Perspective,” IEEE JSAC, vol. 36, 2018.

[5] R. Iyer et al., “Performance Contracts for Software Network Functions,”
in NSDI 19. Boston, MA: USENIX Association, Feb. 2019, pp. 517–530.

[6] A. Manousis et al., “Contention-Aware Performance Prediction For
Virtualized Network Functions,” in ACM SIGCOMM, 2020.

[7] Z. Zhao et al., “Achieving 100Gbps Intrusion Prevention on a Single
Server,” in USENIX OSDI, 2020, pp. 1083–1100.

[8] Z. Zheng et al., “Grus: Enabling Latency SLOs for GPU-Accelerated
NFV Systems,” in IEEE ICNP, 2018, pp. 154–164.

[9] X. Wang et al., “Self-play learning strategies for resource assignment in
Open-RAN networks,” Computer Networks, vol. 206, p. 108682, 2022.

[10] D. Bankov et al., “Enabling real-time applications in wi-fi networks,”
International Journal of Distributed Sensor Networks, vol. 15, 2019.

[11] W. Azariah et al., “A survey on Open Radio Access Networks: Challenges,
research directions, and open source approaches,” 2022.

[12] S. Han et al., “SoftNIC: A Software NIC to Augment Hardware,” UC
Berkeley, Tech. Rep., 2015.

[13] L. Linguaglossa et al., “Survey of performance acceleration techniques
for Network Function Virtualization,” Proceedings of the IEEE, 2019.

[14] T. Lévai et al., “Batch-scheduling Data Flow Graphs with Service-
level Objectives on Multicore Systems,” INFOCOMMUNICATIONS
JOURNAL, vol. 14, pp. 43–50, 2022.

[15] T. Lévai et al., “Batchy: Batch-scheduling Data Flow Graphs with Service-
level Objectives,” in USENIX NSDI 20, Santa Clara, CA, 2020.

[16] T. Barbette et al., “Fast Userspace Packet Processing,” in ACM/IEEE
ANCS, 2015, pp. 5–16.

[17] C. A. Waldspurger et al., Stride scheduling: Deterministic proportional
share resource management. MIT, 1995.

[18] C. Lan, “An Architecture for Network Function Virtualization,” Ph.D.
dissertation, UC Berkeley, 2018.

[19] J. Wang et al., “Quadrant: A Cloud-Deployable NF Virtualization
Platform,” in ACM SoCC, 2022, p. 493–509.

[20] S. G. Kulkarni et al., “NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains,” in ACM SIGCOMM, 2017, pp. 71–84.

[21] M. S. Bazaraa et al., Nonlinear programming: theory and algorithms.
John Wiley & Sons, 2013.

[22] “Source code on GitHub,” https://github.com/hsnlab/realtime-nf-scheduling.
[23] D. Bansal et al., “Dynamic behavior of slowly-responsive congestion

control algorithms,” ACM SIGCOMM CCR, vol. 31, pp. 263–274, 2001.
[24] A. Tootoonchian et al., “ResQ: Enabling SLOs in Network Function

Virtualization,” in USENIX NSDI, 2018, pp. 283–297.

https://github.com/hsnlab/realtime-nf-scheduling

	Introduction
	Background, Challenges and System Model
	Dataflow Graphs and Scheduling
	System Model
	Problem Statement

	An Optimal Scheduling Algorithm
	Assumptions
	Delay Estimation
	Rate Estimation
	Feasible WFQ Scheduling Control

	A Practical Real-time Scheduler
	A Simplified Model
	A Model-predictive Scheduler Controller

	Simulator
	Evaluation
	Validating the Delay Estimate
	Control Algorithm

	Related Work
	Conclusions
	References

