
Charting the Complexity Landscape of Compiling
Packet Programs to Reconfigurable Switches

Balázs Vass, Erika Bérczi-Kovács, Ádám Fraknói, Costin Raiciu, Gábor Rétvári

Abstract—P4 is a widely used Domain-specific Language for
Programmable Data Planes. A critical step in P4 compilation
is finding a feasible and efficient mapping of the high-level P4
source code constructs to the physical resources exposed by
the underlying hardware, while meeting data and control flow
dependencies in the program. In this paper, we take a new look
at the algorithmic aspects of this problem, with the motivation to
understand the fundamental theoretical limits and obtain better
P4 pipeline embeddings, and to speed up practical P4 compilation
times for RMT and dRMT target architectures. We report mixed
results: we find that P4 compilation is computationally hard even
in a severely relaxed formulation, and there is no polynomial-time
approximation of arbitrary precision (unless P=NP), while the
good news is that, despite its inherent complexity, P4 compilation
is approximable in linear time with a small constant bound even
for the most complex, nearly real-life models.

I. INTRODUCTION

Future computing applications critically depend on more ef-
ficient, reliable, flexible, and observable networks [3]. Accord-
ingly, programming reconfigurable switch pipelines using a
high-level domain-specific language like P4 [4] is increasingly
being adopted in diverse application areas, like large-scale dis-
aggregation, in-network computation [5], telemetry [6], load-
balancing [7], [8], etc. With applications booming, we witness
dataplane programs growing in complexity, including more
and larger match-action tables, diverse header parse graphs,
table–action dependency relationships, and match and action
types [9]. At the same time, new generations of programmable
switch ASICs [10] feature even more dataplane resources and
pipeline stages.

Balázs Vass and Gábor Rétvári are with Department of Telecommunications
and Artificial Intelligence, Faculty of Electrical Engineering and Informatics
(VIK), Budapest University of Technology and Economics (BME) and HUN-
REN-BME Information Systems Research Group. Balázs Vass is also affiliated
to Faculty of Mathematics and Computer Science, Babes, -Bolyai University,
Cluj Napoca, Romania. Contact them on {balazs.vass,retvari}@tmit.bme.hu.
G.R. was partially funded by the grant NKFIH/OTKA Project #135606.
Supported by the ÚNKP-23-4-II-BME-345 New National Excellence Program
of the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund.

Erika Bérczi-Kovács and Ádám Fraknói are with ELTE Eötvös Loránd Uni-
versity, Budapest, Hungary. E. B.-K. is also with HUN-REN-ELTE Egerváry
Research Group on Combinatorial Opt.. Contact them on erika.berczi-
kovacs@ttk.elte.hu, and fraknoiadam@student.elte.hu. This research was in
part supported by the Ministry of Innovation and Technology of Hungary from
the National Research, Development and Innovation Fund, financed under
ELTE TKP 2021-NKTA-62, FK 132524 funding schemes, and by the János
Bolyai Research Scholarship of the Hungarian Academy of Science.

Costin Raiciu is with University Politehnica of Bucharest and Broadcom.
Contact him on costin.raiciu@cs.pub.ro. This research was partly funded by
a Huawei Research Gift and by a VMWare Research Grant.

Parts of this work were presented on EuroP4 ’20 and ’22 [1], [2].

In

Pa
rs

er

Stage 1

Pk
t

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster 1

Stage 2

Pk
t

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster 2

Stage N

Pk
t

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster N

Out

D
ep

ar
se

r

(a) RMT

Crossbar

In

Pa
rs

er

D
is

tr
ib

ut
or Out

D
ep

ar
se

r

Proc. 1

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster 1

Proc. 2

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster 2

Proc. N

M
at

ch

Pk
t

A
ct

io
n

Memory
Cluster N

(b) dRMT

Fig. 1: Programmable packet forwarding ASICs: RMT and dRMT

Dataplane programming adopts a top-down approach: the
required behavior of the network is described in a declarative
P4 program, which is then mapped to the underlying hardware
by a P4 compiler [11]–[20]. The compiler must analyze the P4
program and, given an abstract model of the hardware target
including limits on the available memory space, width, and
types, the number of processing stages, and the supported
level of concurrency at each stage, find the best encoding
of the match-action tables into the target switch pipeline so
that control and data dependencies in the P4 program are
reproduced in a semantically correct way.1 Here, the “best”
encoding may be such that it maximizes the throughput while
keeping the latency within reasonable bounds.
Programmable packet forwarding ASICs: RMT vs. dRMT.
The seminal paper [17] set the stage for P4 program compila-
tion for the Reconfigurable Match-Action Table (RMT) switch
architecture, using an abstract model to describe the resource

1Higher level languages like µP4 [21] and Lyra [14] have been proposed
to raise the abstraction level. They still have to solve the pipeline embedding
problem before deployment, and currently use greedy approaches. Chipmunk
[20], to tame complexity, breaks up the program into smaller pieces and
compiles each part independently; this makes the program tractable in the
examples shown but can result in globally sub-optimal outcomes.

Pipeline #nodes #arcs ILP runtimes in [sec] for different gaps Greedy Gap (greedy
50% 30% 20% 10% 0% runtime #stages to opt.)

L3DC 11 13 1.29 1.32 1.34 1.35 1.30 0.055 14.2%
L2L3 simple 13 16 4.06 7.78 7.95 8.74 10.3 0.153 8.3%

L2L3 complex 24 35 293 703 2658 4315 4931 0.200 14.8%

TABLE I: Running time of the algorithms of [17] for pipeline embedding on a commodity quad-core computer with CPU @ 2.3 GHz and
8 GB RAM. The ILP used parallel B&C on 4 threads. While the greedy approach scales with the network size, ILP runtimes explode.

requirements and data-/control-dependencies of P4 programs
as well as the switch dataplane resources. By assuming the
ability to recirculate packets back into the pipeline in RMT
while reducing throughput by a factor of the number of
recirculations, we can calculate the throughput tRMT(N) as
a function of the number of processors N and the number of
stages S required to run the program at one packet per clock
cycle as (cf. [22, Eq. (9)]):

tRMT(N) = min{1, 1/dS/Ne}. (1)

Thus, in RMT, the task of maximizing the throughput trans-
lates to minimizing the number of stages used by the P4
program embedding.

RMT has two important restrictions: (1) a table memory
is local to a pipeline stage, implying that memory not used
by one stage cannot be reclaimed by another, and (2) RMT is
hardwired to sequentially execute matches followed by actions
as packets traverse pipeline stages. Thus, P4 embeddings
for RMT may exhibit performance cliffs; e.g., adding only
a single MAT to a P4 program may halve the throughput
due to recirculation (see also §II-A). The disaggregated RMT
(dRMT) architecture [22] is an upgrade to RMT addressing
these issues. First, dRMT moves table memories out of
pipeline stages and into a centralized pool that is accessible
through a crossbar. Second, dRMT replaces RMT’s pipeline
stages with a cluster of processors that can execute match
and action operations in any order (see Fig. 1). Intuitively
speaking, and considering a single processor for a moment,
the aim of maximizing throughput translates to minimizing the
(average) number of clock cycles P between the termination of
processing two consecutive packets. We note that depending
on resource constraints, this minimal period P is a natural
number possibly greater than 1. Supposing that a processor
can ensure finalizing a packet in every P -th clock cycle, it is
easy to see that the number of processors needed for achieving
line rate (i.e., to finish the processing of a packet in each clock
cycle) is also P , since processors can process packets in a
round robin fashion (see Fig. 2). With a given number of N
processors available, the throughput is inversely proportional
to period P (cf. [22, Eq. (11)]). That is,

tdRMT(N) = min{1, N/P}. (2)

This means that in dRMT, the task of maximizing the
throughput translates to minimizing the period P . We note
that, with similar resources, tdRMT ≥ tRMT [22, Thm. 3.3].
Algorithmic difficulties of pipeline embedding. For RMT
architectures, [17] proposes an Integer Linear Program (ILP)
to obtain an optimal solution, but with possibly exponential
running time and/or memory footprint, as well as a greedy
heuristics to get quick embeddings but with unknown opti-

mality gap (margin from the optimal solution). Unfortunately,
the most important algorithmic questions related to pipeline
embedding have remained open since this seminal paper [17].
This is becoming increasingly troubling, with the trend of
P4 programs getting ever larger and the underlying switch
ASICs getting more complex. Accordingly, P4 compilation
times may easily grow beyond practical: Table I reports the
typical pipeline embedding times on some common-case P4
programs obtained using the framework in [17], [23]. Indeed,
finding the exact optimum may take more than an hour for
the ILP, even on a moderate-size P4 program of 24 match-
action tables and 35 control flow dependencies. Anecdotal
evidence exists that it often takes several hours for a larger
P4 program to be compiled with commercial P4 SDKs and
ILP solvers, and sometimes even finding a feasible pipeline
embedding is already a huge computational challenge. This
makes P4 (re)compilation a painful and cumbersome process,
complicating debugging and wasting programmer time. At the
same time, the greedy heuristics, which are guaranteed to run
in polynomial time, may produce low-quality embeddings, and
they may easily conclude that there is no feasible embedding
even when there is one.

P4 program embedding over the dRMT architecture also
faces many open algorithmic questions. For instance, evaluat-
ing one of the exemplary P4 programs often cited to demon-
strate the complexities of real-life P4 programs, a subprogram
of switch.p4 called ”Egress”, [22] identifies as a firm lower
bound that a processor cannot cope with packets arriving in
less than every P = 7th clock cycle. At the same time, it
was not possible to reduce the period P of the embedding
below P = 11 using the heuristics and ILPs proposed in
[22] in around 105 seconds. Since throughput is inversely
proportional to period P , this leaves 57% throughput gap
between the hypothetical optimal embedding and the currently
known best solution. Due to the potential infeasibility of the
ILP runtimes, greedy heuristics were also investigated. Here, in
our experiments, our greedy embedding algorithm provided in
[2] achieved at least the throughput yielded by the embedding
given by the rnd sieve of [22]. More precisely, in [2], we
compared the performance of these algorithms on P4 program
instances ”Egress”, ”Ingress”, and ”Combined” obtained from
switch.p4 [22], measured as the percentage of the best
throughput provided by the ILPs. While our greedy achieved
85%, 89%, and 91%, rnd sieve fell behind with 85%, 81%,
and 73% on the above graph instances, respectively (cf. [2]).

Main contributions. In this paper, we provide a compre-
hensive algorithmic landscape of P4 pipeline embedding both
for the RMT and dRMT architectures. To the best of our
knowledge, ours is the first principled approach to this end. We
take off from a heavily simplified model of both programmable

TDG for RMT:
v0

v1

v2

ODG for dRMT:
a0

m1 a1

m2 a2

(a)

stage 1 stage 2 stage 3

v0 v1 v2

(b)

proc.
cycle

0 1 2 3 4 5 6

0 a0 m1 m2 a1&a2

1 a0 m1 m2 a1&a2

0 a0 m1 m2 a1&a2

1 a0 m1 m2 a1&a2

(c)
Fig. 2: The TDG and ODG representation of a toy program (a), where ai and mi stand for action and match nodes/operations. Supposing a
processor can initiate ≤ 1 match per clock cycle, (b) illustrates a straightforward RMT-embedding, (c) encodes an optimal dRMT-embedding
of the program, where P = 2.

switch targets (the INF-CAP and BASIC models, respectively)
on which pipeline embedding maps to well-known combinato-
rial optimization problems that can be solved to optimality in
linear time. Then, we gradually introduce additional degrees
of complexity to the bare-bones models to obtain increasingly
more realistic and restrictive RMT and dRMT models, and
we give a comprehensive characterization of the respective
computational complexity and approximation bounds. As a
main contribution, we show that the maximum throughput in
these models is constant-approximable in linear time, but there
is no Polynomial Time Approximation Scheme (PTAS) for
any of the advanced models (unless P=NP). After presenting
the formal problem definitions, the complexity landscape is
summarized in Table IV.

For RMT, our results provide new characterizations for
the P4 compilation/embedding efficiency obtainable with the
techniques proposed in [17], [23]; see the results summarized
in Table V. Importantly, we find that a simple application of
the principles of the greedy pipeline embedding heuristics First
Fit by Level (FFL) proposed in [17] and implemented in [23]
to any of the RMT models studied in this paper already pro-
vides an approximation with a small constant gap, presenting
an appealing choice when resource requirements are not that
stringent. Our approximation algorithms may also be used to
speed up optimal compilation, by providing provably good
initial primal feasible solutions for bootstrapping the ILPs.

For the dRMT architecture, we determine the algorithmic
complexity of different versions of the P4 program scheduling
problem, and we present linear time constant-approximation
algorithms. These results are summarized in Table VI. We
provide lower bounds on the achievable throughput (or, equiv-
alently, upper bounds on the achievable period P), a feature
that has not been proposed in previous approaches.

The rest of the paper is organized as follows. In §II, we
formalize the problem statement for each model and restate our
main contributions formally. In §III, the linearly tractable sim-
plified problem versions and related algorithms are discussed
in more detail for both architectures. In §IV and §V, we build
sequences of increasingly complex models to characterize
the resource requirement of realizing P4 programs for RMT
and dRMT, respectively. For each model, we analyze the
computational complexity of the particular incarnation of the
P4 pipeline embedding problem, and, using classical results in
combinatorial optimization, we derive the corresponding in-
approximability (bad news) and approximability (good news)
bounds. Finally, in §VI and VII, we cast some open questions,
and conclude the paper, respectively. In the main part, we focus

on the claims and present only intuitive sketches of the proofs;
the details are relegated to the Appendix.

II. MODELS AND MAIN RESULTS

The real complexity of P4 program embedding stems from
the difficulty of assigning the elements of the match-action
logic to the physical resources of the switch pipeline so that
the result is a semantically correct dataplane behavior that
matches the intent of the programmer. This difficulty, on the
one hand, arises from the fact that there are various control-
flow dependencies, implicit or explicit, in the P4 program
that requires properly sequencing the match-action stages (for
RMT) or clock cycles (for dRMT) in the switch pipeline. For
instance, in RMT, a packet header field cannot be processed
until a previous stage has finished modifying it. Similarly, in
dRMT, the processor cannot start a given task before all the
preceding tasks have finished. On the other hand, dataplane
resources are inherently restricted in size and the type of
operations supported; e.g., a TCAM can store only a limited
amount of ternary match entries and only of limited width.

A. P4 program representations and example embeddings

To illustrate the P4 program embedding problem both to
RMT and dRMT switches along with their similarities and
differences, we use a toy program (taken from [22]). As
depicted in Fig. 2a, the intermediate graph representation of
the control-flow dependencies used by the compilers is slightly
different in the studied architectures.

RMT switches use a so-called Table Dependency Graph
(TDG), which is a directed, acyclic graph (DAG) of the
dependencies (edges) between the logical match-action tables
(MATs, considered as vertices) in the control flow. Dependen-
cies arise between MATs that lie on a common path through
the control flow, where table outcomes can affect the same
packet. The dRMT architecture uses a somewhat finer repre-
sentation of the P4 program called the Operation Dependency
graph (ODG). The ODG is also a DAG. Intuitively, for larger
flexibility, the ODG splits each MAT into a (possibly empty)
match and action part. More formally, each node vi of the TDG
is represented in The ODG by match node mi and action node
ai. There is an arc from mi to ai; all the in- and out-arcs of vi
are inherited by mi and ai, respectively. Finally, if mi or ai
is empty (no match or action was indicated in vi), we merge
it to its twin by contracting arc (mi, ai).

In the example in Fig. 2a, we can see a simple TDG with a
fork, having two leaf nodes v1 and v2 dependent on source v0.

Notation Meaning
DT =
(V,E)

Control-flow dependencies represented for RMT as a directed
acyclic graph (DAG): Table Dependency Graph (TDG)

nv Height of node: max. # of entries in a node v ∈ V (nv ∈ N+)

nS , nT
Height (i.e., number of rows) in the SRAM and TCAM of a
memory cluster (nS , nT ∈ N+)

wv Width of a node v ∈ V
wT , wS Width (i.e., number of columns) of TCAMs, width of SRAMs

τ Maximum number of tables per stage (τ ∈ N+)

sram(v) Denotes whether node v can be mapped to SRAMs (boolean)

hsplit

With hsplit allowed, each node v ∈ V can be (recursively)
replaced in V by v1, v2 such that nv1 + nv2 = nv , all the
in-arcs and out-arcs of u are assigned to u1 and u2, resp.,
and an additional (u1, u2) arc is added to the arc-set.

TABLE II: Notations used in the Pipeline Embedding Problem
(PEP) for the RMT architecture (Def. 1).

Notation Meaning
DO =
(V,E)

Control-flow dependencies represented for dRMT as a (DAG):
Operation Dependency Graph (ODG)

VA, VM Sets of action and match nodes, resp. (V = VA ∪ VM)
v, a, m ‘node’ (v ∈ V), ‘action node’ (a ∈ VA), ‘match node’ (m ∈ VM)
l(v) CPU cycles to wait after the start of node v

∆A, ∆M
For each action node a, l(a) = ∆A ∈ N+;
for each match node m, l(a) = ∆M ∈ N+

A, M
In each CPU cycle, each processor can initiate up to M parallel
table searches, and can modify up to A action fields in parallel
(A,M ∈ N+)

wm, wa Width of a match and action node (wm, va ∈ N+)

IPC
Inter-Packet Concurrency (IPC): each processor in each cycle
may start a match for at most a fixed number of IPC different
packets and likewise start actions for up to IPC different packets

TABLE III: Notations used in the Disaggregated Pipeline Embedding
Problem (DPEP) for the dRMT architecture (Def. 2).

The ODG representation is a straightforward transformation
of the TDG, where m0 being empty was merged back to a0.
We schedule these graphs to run both on RMT and dRMT,
assuming both can perform up to 1 match every clock cycle
in each stage/processor. For simplicity, we assume that there
is no latency constraint (or, equivalently, every edge mandates
a minimum latency of one cycle between the start of the
operations on the edge).

The RMT pipeline requires a minimum of S = 3 stages
as it lacks the necessary match capacity to simultaneously
execute nodes v1 and v2 (containing matches m1 and m2), and
both of these nodes must follow v0 (see Fig. 2b). Assuming
that there are N = 2 stages/processors (with the contents of
the now non-existent stage 3 mapped to stage 1, and packets
recirculated), by Eq. (1), this translates to a throughput of
tRMT(2) = min{1, 1/d3/2e} = 1/2. Intuitively, this is because
each packet has to traverse the pipeline twice.

In contrast, using these two processors, dRMT can schedule
the same program to run at line rate (see Fig. 2b). Here,
each row represents the sequence of operations for a single
packet carried out on a single processor. It’s worth noting
that the period of this embedding is P = 2 (that is, each
processor can terminate the processing of a packet in every
second clock cycle), and packets are sent to processors in a
round-robin fashion, where the packet that arrives in cycle
k is processed by processor k mod 2. The throughput is
one packet per cycle, as can also be checked by Eq. (2):
tdRMT(N) = min{1,N/P} = min{1, 2/2} = 1.

B. Formal Models and Problem Statements

As indicated, from both RMT and dRMT, we will depart
from polynomially solvable simplified problem definitions,
then we will gradually add more levels of complexity to the
problems in §IV and §V, respectively. However, for clarity,
we already provide here the problem definitions of the most
complex models tackled in this paper.

In the case of architecture RMT, based on Eq. 1, a pro-
gram embedding that minimizes the number of stages S also
maximizes the throughput. Thus, our aim will be minimizing
S while respecting architectural and control-flow constraints.

We call this problem the Pipeline Embedding Problem (PEP),
and it is formally defined in Def. 1. In a nutshell, a PEP
instance input consists of the following. A TDG, maximum
number of entries in each node (table), SRAM, and TCAM
heights (number of rows), node widths, TCAM/SRAM widths
(number of columns), maximum number of tables per stage,
and whether dividing a node consisting of an excessive amount
of entries into separate nodes (hsplit) is allowed. The output is
a mapping of TDG nodes to stages s.t. TDG arcs are forward,
and memory constraints are satisfied. Note that for a node that
has been hsplit-ted (maybe multiple times), only its starting
and end stage is given as output. We formally define the
problem as follows.

Definition 1. We use the notations of Table II. The Input
of a PEP instance consists of the following. A TDG DT =
(V,E), height of node: max. # of entries in a node (table)
nv , height (i.e., number of rows) of SRAM, and TCAM (nS
and nT , respectively (+∞ if not considered)), node widths
wv (1 if not indicated), TCAM/SRAM widths wT , wS (+∞
if not considered), max. # of tables per stage τ (+∞ if not
indicated), sram(v) denoting whether node v can be mapped
to SRAMs for all v ∈ V (false if only one resource considered),
and hsplit (only if indicated).

The Output is a mapping of TDG nodes to stages s.t.
TDG arcs are forward, and resources of memory clusters
are not exceeded. Sometimes we call this mapping a feasible
embedding. Note that for a node that has been hsplit-ted
(maybe multiple times) only its starting and end stage is given
as output.

In a PEP instance, the goal is to find the minimum number
of stages S for which a feasible embedding exists. In the
decision version of PEP the input is extended with a value k,
and the task is to decide if there exists a feasible embedding
using at most S = k stages.

For dRMT, according to Eq. (2), a program embedding
(scheduling) maximizes the throughput exactly when it min-
imizes the period P in which each processor can start/finish
processing of a new packet. Thus, our aim is to minimize P .
We call this problem the Disaggregated Pipeline Embedding

RMT models (PEP) dRMT models (DPEP)
Problem denomination INF-CAP 1D1R 1D1R-hsplit 2D1R 2D2R 2D2R-T/S BASIC IPC1 WIDTH W-IPC1 W-IPC2

M
od

el
fe

at
ur

es

3

=
co

ns
id

er
ed

7

=
no

t
co

ns
id

er
ed

TDG/ODG dependencies 3 3 3 3 3 3 3 3 3 3 3

memory+processing disaggregation 7 7 7 7 7 7 3 3 3 3 3

max. # entries in node, # rows of SRAM/TCAM (nv, ns, nT) 7 3 3 3 3 3 7 7 7 7 7

hsplit- horizontal table splitting 7 7 3 3 3 3 (3) (3) (3) (3) (3)
memory widths (wS , wT) 7 7 7 3 3 3 7 7 7 7 7

memory types (TCAM/SRAM) 7 7 7 7 3 3 7 7 7 7 7

max. # tables per memory cluster (τ) 7 7 7 7 7 3 7 7 7 7 7

max. # parallel operations launchable (A,M) 7 7 7 7 7 7 7 7 3 3 3

inter-packet concurrency (IPC) 7 7 7 7 7 7 7 3 7 3 3

Maximizing the throughput is part of
complexity class. . . (unless P = NP)

P APX \ PTAS P APX \ PTAS

TABLE IV: Overview of results obtained in this paper. Throughput maximization, for our simplest problem settings, can be done in linear
time for both RMT and dRMT. In the rest of the models, assuming P 6= NP , for a fixed (small) ε, the maximal throughput cannot be
approximated in a factor of 1 − ε in polynomial time (i.e., they are not part of the PTAS complexity class). As all our models allow
polynomial-time approximation algorithms with approximation ratio bounded by a constant, they are part of the APX complexity class.

Problem, which is formally defined in Def. 2. We note that,
partly because of the periodicity, to ensure a better formal
administering of the dRMT throughput maximization, we
raised the level of abstraction compared to the PEP problem
definitions. In a nutshell, the input of a DPEP instance consists
of the following. An ODG, sets of action and match nodes,
latencies introduced by match and action nodes, the maximum
number of parallel action field modifications and table searches
per processor per cycle, widths of action and match nodes,
and Inter Packet Concurrency (IPC) denoting the maximum
number of packets for which each processor in each cycle
may start a match or an action (these may be different). We
formally define the problem as follows.

Definition 2. We use the notations described in Table III. The
Input of a DPEP instance consists of the following. An ODG
DO = (V,E), sets of action and match nodes, resp. (VA, VM),
latencies introduced by match and action nodes, resp. (∆A,
∆M), maximum number of parallel action field modifications
and table searches per processor per cycle A,M , width of
action and match nodes wa, wm (1 if not indicated), Inter
Packet Concurrency (IPC) value (1, 2, or, if not indicated, ∞).

The Output is a (DPEP) scheduling of the nodes, which is
a function S : V → N+ such that for every arc (vi, vj) ∈ E
we have S(vj)−S(vi) ≥ l(vi). For a scheduling S and period
P ∈ N+, let SP denote the set of schedulings Si such that
Si(v) = S(v) + iP (for i ∈ N). We say that a scheduling S is
feasible with period P if

1) ∀t ∈ N+ :
∑

Si∈SP

∑
m∈VM , Si(m)=t wm ≤M

2) ∀t ∈ N+ :
∑

Si∈SP

∑
a∈VA, Si(a)=t

wa ≤ A
3) ∀t ∈ N+ : #

{
Si ∈ SP

∣∣∃m ∈ VM : Si(m) = t
}
≤ IPC

4) ∀t ∈ N+ : #
{
Si ∈ SP

∣∣∃a ∈ VA : Si(a) = t
}
≤ IPC.

In a DPEP instance, the goal is to find the minimum period
P such that there exists a scheduling S which is feasible
with period P . In the decision version of DPEP the input
is extended with a value k, and the task is to decide if there
exists a feasible P -periodic scheduling with P ≤ k.

Finally, in the complexity analysis, we use the unit cost
arithmetic model of computation, where basic operations
+,−, ∗, /are unit-cost. Aligned to this, we suppose that nv/nS ,

nv/nT , wS/wv, wT/wv are O(1). We argue these assumptions
hold for practical settings, and unbounded ratios of the above
fractions do not interfere with the polynomial solvability or
constant approximability of the problems and add negligible
time complexities that are straightforward to cope with.

C. Main results

The main results are summarized in Table IV. Columns of
the Table correspond to PEP and DPEP problem versions, in
increasing complexity from left to right. The rows of the Table
correspond to different constraints, and marks 3 and 7 encode
whether that specific constraint is taken into consideration for
the specific problem. For example, TDG/ODG dependencies
are taken into consideration for all the models, while memory
and processing disaggregation is present only in the DPEP
(dRMT models). We note that all the models will be detailed in
the latter sections, and are specific cases of Definitions 1 and 2.
For example, not considering the memory heights and widths,
the maximum number of tables per memory cluster, or IPC can
be translated to taking these numbers as being sufficiently large
(or even infinite). Possible horizontal table splitting (hsplit)
is only relevant in the PEP models, as in the DPEP problem
formulations, conform to [22], we suppose memory clusters
are sufficiently big (can host an infinite amount of entries).
When we do not consider both memory types (TCAM/SRAM),
we suppose there is a single type of memory that can host any
node (e.g., TCAM). The high-level findings of this study can
be summarized as follows.

MAIN RESULTS OF THIS PAPER. In models INF-CAP and
BASIC, the throughput can be maximized in linear time. In the
rest of the models, the throughput is constant-approximable
in linear time, but it is not approximable with arbitrary
multiplicative precision in polynomial time, unless P=NP .

The problems in INF-CAP and BASIC can be solved
to optimality in linear time by claims formally proved in
Appendix A. In all the other models, the throughput is constant
approximable by combining Eq. (1) and (2) with theorems
stating that the minimum stage number and the minimal
period are constant-approximable, in the RMT and dRMT

architectures, respectively (by proofs in Appendix C). We get
that in all the models different from INF-CAP and BASIC,
the throughput is inapproximable with arbitrary multiplicative
precision in polynomial time (unless P= NP) by combining
Eq. (1) and (2) with theorems stating that the minimum stage
number and the minimal period are NP-hard to determine and
to approximate (by proofs in Appendix B).

III. TRACTABLE SIMPLIFICATIONS

A. RMT model INF-CAP: Mapping Concurrency

In this section, we consider a minimal problem underlying
all pipeline embedding problems: the task is to correctly
represent data- and control dependencies in a switch pipeline
of infinite resources. We focus on the RMT architecture first.
Recall that, for RMT, throughput maximization translates to
minimizing the number of stages used.

In this model, one would naively try to map the entire P4
match-action logic to the first stage (any large program fits into
unlimited memory, after all), obtaining a massively concurrent
embedding. This, however, most probably would result in an
incorrect embedding due to the inherent control-flow depen-
dencies in the P4 program: e.g., whenever table A modifies
a field that table B matches, table A cannot be assigned to
the same stage as table B (match-dependency), if both tables
modify the same field then the one that is applied last must be
assigned to a later stage (action-dependency), etc.; see [17] for
the details. In the TDG, the packet processing pipeline can be
modeled as a directed path with nodes s1, s2, . . . representing
the pipeline stages, so that the arcs (si, si+1) encode the
succession of stage si and si+1 in the pipeline. To simplify the
developments, we assume that the switch has infinitely many
stages, so the objective is to minimize the number of stages
used by the embedding.

As the simplest formulation of the P4 pipeline embedding
problem for RMT (INF-CAP), below we require the MATs V
to be embedded in the switch pipeline such that the arcs of
the TDG are “forward”; i.e., for every (la, lb) ∈ E, table la
is mapped to a stage si and lb is mapped to a stage sj with
i < j. However, we assume that all stages are of unlimited
processing capability (i.e., can perform all types of matches
and actions) and infinite size and “width” (resource limits will
be introduced in the next sections). We note that the algorithm
for this model (Alg. 1) is the core of every approximation
algorithm we give for more general models.

RESULTS FOR THIS MODEL. Pipeline embedding under the
INF-CAP model can be solved to optimality in linear time:
O
(
|V |+ |E|

)
. (by Claim 1)

The proof is trivial: under INF-CAP one can obtain a correct
embedding using topological sorting in polynomial time (in
fact, linear) as follows. We group nodes that end the same
length i of longest paths of dependencies into a so-called
level L(i) according to Alg. 1. Then, we simply assign the
nodes of each nonempty level L(i) to stage i. It is easy
to see that this algorithm returns a valid TDG embedding
with the minimal theoretically possible stages (the length of
the longest directed path in the TDG). In hindsight, when

Algorithm 1: Calculate levels
Input: DAG D(V,E)
begin

1 [v1, v2, . . . , vn] :=
TopologicalOrdering(D(V,E))

2 for i = 1, . . . , n do
3 L(i) := empty list
4 if vi does not have any in-arc then

λ(vi) := 1

5 else
λ(vi) := max{λ(vj)|(vj , vi) ∈ E}+ 1

6 append vi to L(λ(vi))

7 return Levels L(1), L(2), . . . , L(n)

the task is only to encode the control-flow dependencies but
there are no resource limits, then the P4 pipeline embedding
problem is “easy”, which even a trivial greedy sorting heuristic
(quite similar to the one proposed in [17]) solves to optimality
rapidly. This finding is not particularly surprising: the types of
control-flow dependencies in a P4 program are very similar to
the dependencies occurring in general programming languages
(read-after-write, write-after-write, etc.), and any compiler can
routinely analyze (and optimize) such dependencies at scale.

B. dRMT model BASIC

Recall that, in contrast to RMT, here, the throughput maxi-
mization translates to minimizing the period of P CPU cycles
in which each processor can finish the processing of a packet.
Also, to utilize the full potential of the disaggregations, here
the P4 program is represented in a DAG slightly different
from the TDG, as each node v of the TDG is split into a
match and an action node m and a, with (m, a) added to
the arcs of the resulting graph. This graph is called Operation
Dependency Graph (ODG, [22]) DO = (V,E), V = VA∪VM ,
where disjoint sets of vertices VA and VM represent the match
and action nodes, and arc set E encodes the inter-dependency
between the vertices. If the tail of an arc e = (u, v) is a match
or action node, then the execution of v can start at least ∆M
or ∆A cycles after the start of execution of u. Moreover, in
each CPU cycle, each processor can initiate up to M parallel
table searches, and can modify up to A action fields in parallel.
Parameters ∆M , ∆A, M and A are positive integers. E.g., the
setting on Fig. 2 can be described by ∆M = ∆A = M = 1,
and an arbitrary A ≥ 2.

Also, in line with [22], we restrict our study to cyclic dRMT
schedules, where a single packet processing plan is repeated
on all packets processed by all processors (cf. [22, §3.2.]). To
give an intuition behind our positive (approximability) results,
[22, Theorem 3.5], the dRMT scheduling problem can be
simplified to the problem of scheduling a single packet on
a single processor. This single packet scheduling has to fulfill
a requirement of P -periodicity: the set of nodes assigned to
clock cycles t, t + P , t + 2P , . . . must meet the ∆M , ∆A,
M , A (and later on the width and inter-packet concurrency)
requirements together, for all t ∈ {1, . . . , P}.

In the BASIC model, there are no additional constraints
to those described above. Every table has a unit width. It is

clear that the minimal value of P is at least the maximum of
d|VM |/Me and d|VA|/Ae. As it turns out, the maximum of these
two values is reachable with a simple greedy algorithm, where
we sort the nodes according to an arbitrary topological order
and place to the first available clock cycle (see Thm. 2).

RESULTS FOR THIS MODEL. DPEP under the BASIC model
can be solved to optimality in linear time: O

(
|E| + |V |

)
.

(by Thm. 2)

IV. (IN)APPROXIMABILITY IN RMT MODELS

A. 1D1R: Adding Simple Resource Constraints

Easily, INF-CAP yielded an embedding with the maximum
possible concurrency. Unfortunately, this model is not too
realistic since it relaxes all types of resource constraints.

In our second RMT model called 1D1R, we assume that
each stage can store only a limited number of table entries;
i.e., each MAT has a one-dimensional (“1D”) memory demand
and each stage has a 1D memory constraint; for simplicity, we
assume that all stages have the same capacity. For now, we
presume that there is only a single type of memory resource
(“1R”) in the switch (TCAM or SRAM) that can perform all
match and action operations required by the P4 program. Our
main result for 1D1R is as follows.

RESULTS FOR THIS MODEL. Pipeline embedding under the
1D1R model is NP-hard. Bad news: the optimal number of
stages cannot be approximated better than 3/2 unless P=NP .
Good news: the optimum can be 3-approximated in linear
time: O

(
|V |+ |E|

)
. (by Lemma 3 & Claim 8)

Intuitively speaking, the hardness and inapproximability
results appear since 1D1R contains NP-hard and inapprox-
imable problems as special cases, like PARTITION [24].
Without going into details, in the construction used in Lemma
3, if the embedded NP-hard problem instance has a solution,
then we have an embedding in 2 stages, otherwise, we need
at least 3 stages. The 3-approximability result can be stated
using an algorithm similar to the one in the previous section
solving INF-CAP (see Claim 8 in Appendix C). The resultant
embedding is guaranteed to use at most 3 times the number
of stages of the optimal one.

B. 1D1R-hsplit: Table Splitting

In the 1D1R model, we require that each MAT is assigned
to a unique pipeline stage as a whole; the intractability of the
related pipeline embedding problem can then be viewed as
a consequence of the intricate combinatorial structure such
packing constraints typically introduce. However, it is not
unusual for some MATs to exceed the storage capacity of a
single pipeline stage; e.g., a large IP routing table may not
fit into a single TCAM bank. To address this challenge, [17]
presents a technique to split MATs across multiple stages:
one stores as many entries in the memory block of each
of the upcoming stages as possible, until eventually all the
entries of the MAT are assigned to a memory block. We
call this operation a horizontal split (or hsplit). Intuitively,
permitting hsplit renders the embedding problem a bit easier,

Algorithm 2: 1D1R-hsplit Greedy Embedding
Input: TDG DT (V,E); stage size nS ; node sizes nv

begin
1 Calculate levels L(1), L(2), . . . , L(|V |) with Alg. 1
2 i := 1
3 while L(i) 6= ∅ do
4 Ei := Ei−1 + d(

∑
v∈L(i) nv)/nSe

5 for v ∈ L(i) do
6 Reserve space for v continuously (using hsplit) in

the next free spaces in stages
S[Ei−1 + 1], . . . ,S[Ei]

7 i := i+ 1

8 return Embedding

in that it allows a MAT to be mapped “fractionally”, splitting
it into multiple MATs placed consecutively in the pipeline,
which relaxes the packing constraints from 1D1R. Next, we
ask whether this relaxation renders the pipeline embedding
problem any more approachable computationally.

Formally, the 1D1R-hsplit model we consider below is a
version of 1D1R where the compiler is allowed to perform
horizontal splits on MATs. Here, hsplit is a specific trans-
formation of the input TDG whereby any MAT U ∈ V is
substituted with two MATs (A,B) = hsplit(U) so that (i) U
is replaced with A and B, (ii) both A and B inherit all arcs of
U , (iii) a new arc (A,B) is created, and finally (iv) the sizes
of A and B sum up to the size of U . Note that hsplit can
be applied recursively to split a MAT into more than 2 tables.
Our complexity results on 1D1R-hsplit are as follows:

RESULTS FOR THIS MODEL. Pipeline embedding under the
1D1R-hsplit model is NP-hard. Bad news: the optimal num-
ber of stages cannot be approximated better than 5/4 unless
P=NP . Good news: the optimum can be 2-approximated in
linear time: O(|V |+ |E|). (by Lemma 4 & Thm. 9)

To obtain the approximation result, we designed Alg. 2.
This algorithm is motivated by the greedy heuristics of [17];
accordingly, the approximability result can be applied to
the generic greedy scheme under 1D1R-hsplit with minor
modifications. We partition the nodes into levels L(i) with
Alg. 1. Nodes in a level are embedded consecutively into
stages: denoting the jth stage by S(j), if the last stage used by
level i−1 is stage S(Ei−1), then nodes in level i are embedded
into stages S(Ei−1 + 1), . . . ,S(Ei) applying hsplit if needed.
We claim that Alg. 2 returns a correct embedding in linear time
(see Thm. 9), and it is a 2-approximation. This is because the
minimum number of stages needed for embedding the TDG
(OPT) is at least the number h of used stages that are not
full after running Alg. 2 since h is at most the length of the
longest dependency chain in the TDG. Additionally, OPT is
at least the number of stages fully utilized by Alg. 2.

The essence is that the additional degree of freedom in-
troduced by hsplit does not eliminate intractability. At the
same time, 1D1R-hsplit admits slightly more favorable ap-
proximability guarantees: we found that under 1D1R-hsplit,
one can quickly find an embedding that uses at most 2 times
the number of stages in an optimal embedding. Put another

RMT Model name INF-CAP 1D1R 1D1R-hsplit 2D1R 2D2R 2D2R-T/S
New feature on top of the
previous model

(mapping
concurrency due
to dependency)

1D capacity/
demands

hsplit (table
entries split

between stages)

2D capacity/
demands

2 kinds of
resources per

stage

limited number of
tables per stage

Complexity P NP-hard NP-hard NP-hard NP-hard
strongly
NP-hard

Bad news: Inapproximable
better than. . . (unless P=NP)

OPT 3/2 ·OPT 5/4 ·OPT 5/4 ·OPT 5/4 ·OPT 5/4 ·OPT

Good news: Constant
OPT 3 ·OPT 2 ·OPT 3 ·OPT

(5 or 8) ·OPT (6 or 9) ·OPT
approximable with. . . (*) (*)

TABLE V: Main results for RMT. Bad news: the Pipeline Embedding Problem (PEP) is NP-hard even with simple precedence and resource
constraints. Good news: the minimum number of stages (and thus, the maximal throughput) in PEP is constant approximable in linear time,
even for the most complex model. (*) means the lower bound holds in certain natural conditions explained in §IV-D.

way, the output of Alg. 2 can be used as a good initial primal
feasible solution to bootstrap ILP problem formulations (like
the one in [17]), which can then at most halve the number of
the stages used. Meanwhile, adopting hsplit also reduces our
best inapproximability bound (from 3/2 to 5/4).

C. 2D1R: Two-dimensional Resources

Up to this point, we have assumed that the stages have a cer-
tain number of rows available, each able to store a single table
entry. In other words, each stage could store a predefined num-
ber of table entries, regardless of the widths of these entries. In
reality, MATs have (at least) two size dimensions (number of
rows as ‘height’, and header field match-width), and similarly,
pipeline memory has two-dimensional capacities. Obviously,
pipeline embedding should respect both dimensions: given the
height nv and the width wv of each MAT v ∈ V , neither the
number of rows used nor the total width of the MATs placed to
any stage can exceed the 2D capacity of that stage. Below, we
consider the simplest form of this model called 2D1R that is
akin to 2D geometric bin-packing and strip packing [25]. We
note that real ASICs typically exhibit several additional subtle
complexities, e.g., memory can be allocated only in discrete
blocks, MATs cannot be arbitrarily placed side-by-side, etc.;
we ignore these here for brevity. Note that hsplit is still
permitted. More precisely, we may translate the optimization
problem of model 2D1R to an abstract problem as follows.
After possible hsplit operations, each table is assigned to a
stage such that precedence constraints are fulfilled. Tables in
a stage are positioned such that 1) tables are non-rotatable
rectangles that have parallel sides to the sides of stages (that
are also considered rectangles), 2) rectangles of tables may
be cut horizontally into smaller tables, but the number of cuts
within a stage is bounded by 2 ·wS/wv for every node 3) no
overlap between (the pieces of) tables is allowed.

As shown next, this second problem dimension makes
pipeline embedding slightly more complex:

RESULTS FOR THIS MODEL. Pipeline embedding under the
2D1R model is NP-hard. Bad news: the optimal number of
stages cannot be approximated better than 5/4 unless P=NP .
Good news: the optimum can be 3-approximated in linear
time: O

(
|V |+ |E|

)
. (by Lemma 4 & Claim 10)

Here, only 3-approximability needs more explanation: we
again motivate this result with a (sketch of a) proof. The

approximation algorithm for 2D1R is quite similar to Alg. 2
we used for 1D1R-hsplit, the only difference is in the packing
of the levels. Initially, inside each level L(i), we partition
nodes into groups according to their width. Without loss of
generality, we scale the widths such that each stage is of width
1. First, MATs of width ≥ 1/2 are packed (in one column),
possibly applying hsplit, then MATs of width in [1/4, 1/2)
are packed in two columns, etc. Generally, let Vw,k denote the
set of MATs of length [1/2k+1, 1/2k). After packing Vw,k−1
is finished, MATs in Vw,k are packed in 2k columns such that
the length of the columns is almost equal; and if the last row
of Vw,(k−1) remains unfilled, then we pack Vw,k such that we
assign some of its elements to the remaining space of the row.
One can show that with this modification Alg. 2 returns a valid
pipeline embedding in polynomial time that 3-approximates
the number of the stages in the optimal solution under 2D1R;
roughly speaking, the idea is that there are at most OPT stages
that are not at least halfway full after Alg. 2 terminates (see
Claim 10 in Appendix C for details).

D. 2D2R: Both SRAMs and TCAMs Available

In most switch ASICs, there are multiple types of memory,
each optimized for different purposes [10]: TCAMs excel at
prefix and wildcard matches but come at a considerable power
budget and cost, while SRAMs are ideal for performing exact
or range matches or for storing action code. Confusingly, some
MATs may be assigned to any type of memory (e.g., a TCAM
can also perform exact matches). We call the pipeline model
with 2 resource types as 2D2R.

One easily concludes that, being a more general model than
2D1R, 2D2R is also NP-hard and inapproximable below 5/4
(unless P=NP , see Lemma 4 for a formal proof). On the
positive side, in Appendix C, we show a modification of Alg. 2
that attains an 8-approximation under 2D2R. Note that the
width wT of TCAMs might be different from the width wS
of SRAMs (that is scaled to be 1), and if wT ≥ wS , our
algorithm is a 5-approximation. In the modified algorithm, we
still embed levels L(i), i ∈ 1, 2, . . . separately. For a level
L(i), (1) we embed those MATs that can be mapped only to
TCAMs, (2) if the width of SRAMs is greater than the width
of TCAMs (i.e., wS > wT), we embed those MATs that can be
mapped only to SRAMs (due to their width being > wT), (3)
we embed the remaining MATs in the next free stages. In all
the previous three phases, embedding follows the steps of the

2D1R version of Alg. 2, starting from the first stage assigned
to the level. The proof of 8- (and 5-) approximation can be
found in Appendix C as proof of Claim 11. Hence, our results
establish appealing approximation bounds of greedy heuristics
under 2D2R as well:

RESULTS FOR THIS MODEL. Pipeline embedding under the
2D2R model is NP-hard. Bad news: the optimal number of
stages cannot be approximated better than 5/4 unless P=NP .
Good news: the optimum can be 8-approximated in linear
time: O

(
|V |+ |E|

)
. If wT ≥ wS , it can be 5-approximated in

the same complexity. (by Lemma 4 & Claim 11)

E. 2D2R-T/S: Constrained Number of Tables per Stage

In recent programmable switch ASICs [10] the number τ
of MATs that can be assigned to a single stage is limited by
the capacity of the memory chips and the crossbars connecting
the stages. Below we (re-)introduce this constraint to obtain
the 2D2R-T/S model, and we find that with this additional
complexity, the problem becomes strongly NP-hard.

RESULTS FOR THIS MODEL. Pipeline embedding under
2D2R-T/S is strongly NP-hard and inapproximable better
than 5/4 unless P=NP . Good news: the optimum can be
9-approximated in linear time: O(|V | + |E|). If wT ≥
wS , it can be 6-approximated in the same complexity.
(by Lemma 4, Claim 5, & Claim 12)

The complexity of the problem can be seen through a
reduction from the stronglyNP-hard 3-PARTITION problem
[24, SP15]. The proof of the approximability can be made
using the greedy heuristic scheme of model 2D2R, with the
modification that wherever the number of MATs assigned to
the current stage would exceed the allowed maximum τ , we
start a new stage. Then, one can show that there are only
OPT more stages needed for embedding under 2D2R-T/S than
under 2D2R since the number of stages hosting exactly τ
MATs is ≤OPT.

F. 2D2R-PISA: Fully-fledged PISA Model

The constraints incurred by a real switch go beyond our
simplified models; see [17], [23]. Incorporating all these op-
erational constraints into a (hypothetical) 2D2R-PISA model,
we see that solving pipeline embedding over 2D2R-PISA is at
least as difficult as on 2D2R-T/S as it contains that as a special
case (strongly NP-hard). The design and formal analysis an
efficient approximation for this model would exceed the limits
of this paper. However, we note that our algorithms presented
for the RMT models of this paper are slight variants of the
First Fit by Level (FFL) heuristic of [17], which was used as
the greedy algorithm on Table I. Thus, the gap of a number of
8% to 15% extra stages used by the FFL compared to the ILP
optimum gives a convincing hint of the practical effectiveness
of our approximation algorithms for the RMT models.

V. (IN)APPROXIMABILITY IN DRMT MODELS

Our next goal is to rebuild step-by-step, and then to analyze
the dRMT models of [22]. To this end, some of the memory

constraints tackled in the case of the RMT architecture will not
be considered here. We argue that, intuitively, introducing the
same memory constraints as in the RMT models still enables
simple constant-factor approximation algorithms similar to
those discussed throughout this study.

A. IPC1: Inter-packet concurrency

On top of the constraints of BASIC, in the IPC1 model,
we assume that each processor may start a match for at most
a fixed number (Inter-Packet Concurrency, IPC) of different
packets and likewise start actions for up to IPC different
packets. The set of packets that start matches and the set of
packets that start actions need not be equal. Below, we assume
IPC=1. It turns out that in the presence of the IPC constraint,
the problem becomes not only NP-hard but there is also no
hope for a polynomial time approximation scheme (PTAS) for
P (unless P=NP). The NP-hardness and inapproximability
can be reduced to a well-known scheduling problem (see
Thm. 6). On the bright side, in this setting, there exists a
3-approximation algorithm, described in Thm. 16.

RESULTS FOR THIS MODEL. DPEP under the IPC1 model
is NP-hard. Bad news: the optimal number of cores to
achieve line rate cannot be approximated better than 4/3 unless
P=NP . Good news: the optimum can be 3-approximated in
linear time: O

(
|V |+ |E|). (by Thm. 6 & 16)

B. WIDTH: Variable table widths

Next, on top of BASIC we will also allow each match and
action node m and a to be of arbitrary width, measured by a
positive integer wm and va, respectively. We represent this in
our WIDTH model by letting each processor to initiate up to
M parallel unit-wide (say, b bits) table searches in each cycle;
e.g., a look-up on two match-action tables with key sizes 3
and 2, respectively, equals five parallel lookup vectors of b
bits each, as long as 5 ≤ M . It turns out that introducing
variable table (key) widths on top of the BASIC model also
makes the DPEP NP-hard and inapproximable (see Thm. 7):

RESULTS FOR THIS MODEL. DPEP under the WIDTH model
is NP-hard. Bad news: the optimal number of cores to
achieve line rate cannot be approximated better than 3/2 unless
P=NP . Good news: the optimum can be 3/2-approximated in
linear time: O

(
|V |+ |E|). (by Thm. 7 & 13)

We note that in the case of WIDTH, the absolute inapprox-
imability and approximability ratios provided in our results
are the same. Thus, these ratios are tight. This phenomenon
stems from the fact that this model is very closely related
to the bin-packing problem. More concretely, for both the
match and action nodes, one can assign a congruence class
to each bin in a solution of a bin-packing problem instance
with the nodes, their widths, and M , or A as input parameters,
respectively. Thus, a WIDTH problem instance can be solved
via a postprocessing of a bin-packing problem solution. It is
known that the bin-packing problem can be solved in linear
time with an absolute approximation ratio of 3/2 [26], and
that this ratio is the best, unless P=NP [27]. The 3/2 − ε

Model name: BASIC IPC1 WIDTH W-IPC1 W-IPC2
New feature on top of the
basic constraints

(basic model) Max. 1 packet per
processor per cycle

(IPC= 1)

arbitrary table widths arbitrary table widths
+ IPC= 1

arbitrary table widths
+ IPC= 2 (≤2
pkt./proc./cycle)

Complexity P NP-hard NP-hard NP-hard NP-hard

Bad news: Inapproximable
better than . . . (,unless P=NP) OPT 4/3 ·OPT 3/2 ·OPT 3/2 ·OPT 3/2 ·OPT
Good news: Constant

OPT 3 ·OPT 3/2 ·OPT 4 ·OPT 8 ·OPTapproximable in. . .

TABLE VI: Overview of the main results for dRMT. Bad news: the Disaggregated Pipeline Embedding Problem (DPEP) is NP-hard even
with relaxing some constraints. Good news: the DPEP is polynomially solvable under the BASIC model, and the minimum period of a
scheduling (thus also the throughput) is constant-approximable in linear time even when considering the model tackled by [22].

inapproximability result of the bin-packing is also a corollary
of the NP-hardness of the PARTITION problem [27].

C. W-IPC1: Main dRMT model

Our next model, W-IPC1, is equivalent to the one studied
in [22]. Here, we simultaneously require IPC= 1 and allow
arbitrary table widths. As expected, combining additional
constraints does not make the problem easier: the minimal P
for which an embedding exists cannot be approximated better
than 3/2 (unless P=NP , see Thm. 6). As a positive result, we
show that in W-IPC1, the optimum can be 4-approximated in
linear time; see Alg. 4, and Thm. 15.

The algorithm is based on the observation that the optimal
period for a scheduling solution (see Def. 2) is independent of
values ∆M and ∆A because it depends only on the number of
clock cycles with at least one match/action node (see Lemma
14). Our approach, at first, greedily finds a solution with
∆M = ∆A = 1 (a simplified scheduling, see Def. 3) such
that clock cycles are filled with match/action nodes at least
half full when possible. Then, this simplified scheduling is
expanded to a proper scheduling in Alg. 4. A feature of our
solutions is that no match and action nodes are assigned to
the same clock cycle.

RESULTS FOR THIS MODEL. DPEP under the W-IPC1 model
is NP-hard. Bad news: the optimal number of cores to
achieve line rate cannot be approximated better than 3/2 unless
P=NP . Good news: the optimum can be 4-approximated in
linear time: O

(
|V |+ |E|). (by Thm. 7 & 15)

We note that, in model W-IPC1, [2] found that a variation
of Alg. 4 achieves at least 85% of best throughput achievable
by ILP formulations on all P4 programs studied in [22],
significantly improving on the heuristic rnd_sieve of [22]
that achieves only 73% of the best ILP solution.

D. W-IPC2: Loose IPC constraints

The original paper [22] also considers the case when IPC
is 2, possibly allowing more compact program embeddings.
Intuitively, increasing IPC from 1 to 2 may allow ≤ 2 as
efficient embeddings. Thus, the greedy algorithm of model
W-IPC1 is 8-approximation in model W-IPC2 (see Thm. 17).

RESULTS FOR THIS MODEL. DPEP under the W-IPC2 model
is NP-hard. Bad news: the optimal number of cores to

Algorithm 3: Simplified Scheduling
Input: ODG DO = (V = VM ∪ VA, E);
W : V → N+;M,A

Output: Simplified scheduling σ : V → N+

begin
1 Calculate levels L(1), L(2), . . . , L(|V |) with Alg. 1
2 values of simplified scheduling σ: not yet defined
3 i := 1
4 while L(i) 6= ∅ do
5 Embed L(i) ∩ VM to the next free clock cycles of σ

with the algorithm of [26]
6 Embed L(i) ∩ VA to the next free clock cycles of σ

with the algorithm of [26]
7 i := i+ 1

return Simplified scheduling σ

Algorithm 4: W-IPC1 Greedy Scheduling
Input:
ODG DO=(V=VM ∪ VA, E); W :V→N+;M,A, ∆M , ∆A

Output: Scheduling S : V → N+

begin
1 Calculate simplified scheduling σ with Alg. 3
2 f(0) := 0, pm := 1, pa := 1
3 for i = 1, . . . , length(σ) do

if there is a node in σ(i) having an in-arc then
δ(i) := max {f(σ(v)) + l(v))|(v, w) ∈ E, σ(w) = i}

else
δ(i) := f(i− 1) + 1

if σ−1(i) ⊆ VM then
f(i) := min{k ≥ δ(i)| k ≡ pm mod P}

4 pm := pm + 1

else
f(i) := min{k ≥ δ(i)| k ≡ pa mod P}

5 pa := pa + 1

6 return Scheduling S := f ◦ σ

achieve line rate cannot be approximated better than 3/2 unless
P=NP . Good news: the optimum can be 8-approximated in
linear time: O

(
|V |+ |E|). (by Thm. 7 & 17)

For IPC= 2, the ILP solvers of [22] can compute efficient
program embeddings relatively easily. Thus, we will not study
this model further here.

VI. DISCUSSION

This study aimed to discuss the most important algorithmic
questions left open in RMT and dRMT base papers [17] and
[22], respectively. Due to space issues, some constraints were
inevitable to be left out of our investigation, just as [17] and
[22] did in their own case. One of these relaxations is that this
study did not model storage constraints for the parsed packet
headers and metadata. However, we believe our approximation
algorithms can be extended to cope with these constraints, too,
using similar techniques as those presented in the Appendix
(note that these constraints are also only tangentially addressed
in [17], [22]).

Further, at the RMT models, in line with both [17] and [22],
our optimization objective was to minimize the number S of
stages needed to embed the P4 program. This, by Eq. 1 (also
cf. [22, Eq. (9)]), in terms of throughput maximization, is just
a more fine-grained version of a bit more relaxed objective
of minimizing the number of packet recirculations. We note
that with this alternative relaxed optimization objective, all
of our complexity findings for RMT models remain valid.
Namely, in model INF-CAP, the throughput can be maximized
in linear time, while in the rest of the models, the throughput
is constant-approximable in linear time, but it is not appro-
ximable with arbitrary multiplicative precision in polynomial
time, unless P=NP .

Lastly, remaining at the possibility of packet recirculations
on an RMT switch, we can see that the stages in each mod N
stage class share the same memory, where N denotes the
number of stages. This constraint is similar to those seen in
our dRMT models. Our certitude is that our approximation
techniques presented in the Appendix carry over if factoring
in cyclic memory constraints for RMT. We left this constraint
relaxed, because, in this study, our principle was to answer
the most urgent algorithmic questions left open by [17], [22],
and not starting from scratch in our own way.

Furthering our findings by factoring in additional constraints
or by considering different objective functions may be a
straightforward target of follow-up studies.

VII. CONCLUSION

This paper investigates the algorithmic aspects of P4
pipeline embedding on a series of relaxed RMT and dRMT
models, with a focus on maximizing switch throughput. We
report mixed findings: while P4 embedding problems, in gen-
eral, are NP-hard even in severely relaxed formulations, the
maximal throughput is constant-approximable in linear time
even in the most complex pipeline models. Evaluations show
that our algorithms can rapidly compute high-quality heuristic
embeddings for real-life P4 programs. Our algorithms may
also be used to speed up optimal compilation, by providing
provably good initial feasible solutions for the ILP solver
running inside commercial P4 compilers. Our study reinforces
the earlier finding [1], [2] that, despite its inherent complexity,
P4 compilation is efficiently approximable, in that it is possible
to obtain provably good embeddings in provably short time.

REFERENCES

[1] B. Vass, E. Bérczi-Kovács, C. Raiciu, and G. Rétvári, “Compiling
packet programs to reconfigurable switches: Theory and algorithms,”
in Proceedings of the 3rd P4 Workshop in Europe. ACM, 2020.

[2] B. Vass, A. Fraknói, E. Bérczi-Kovács, and G. Rétvári, “Compiling
packet programs to drmt switches: Theory and algorithms,” in Proceed-
ings of the 5th P4 Workshop in Europe. ACM, 2022.

[3] N. McKeown, “Programmable forwarding planes are here to stay,” in
ACM SIGCOMM NetPL, 2017.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
CCR, vol. 44, pp. 87–95, 2014.

[5] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,”
vol. 55, no. 3. ACM SIGCOMM, 2016, pp. 19–24.

[6] C. Kim, A. Sivaraman, N. P. Katta, A. Bas, A. Dixit et al., “In-band
network telemetry via programmable dataplanes,” 2015.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in ACM
SOSR, 2016, pp. 1–12.

[8] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
Layer-4 load balancing fast and cheap using switching ASICs,” in ACM
SIGCOMM, 2017, pp. 15–28.

[9] “Switch.p4,” https://github.com/p4lang/switch/blob/master/p4src/switch.
p4, accessed: 2020-08-19.

[10] Barefoot, “Intel/Barefoot Tofino 2: Product Brief,” https://www.
barefootnetworks.com/products/brief-tofino-2, accessed: 2020-09.

[11] T. P. L. Consortium, “Behavioral model (bmv2),” https://github.com/
p4lang/behavioral-model, accessed: 2022-09.

[12] W. Tu, F. Ruffy, and M. Budiu, “P4c-xdp: Programming the linux kernel
forwarding plane using p4,” in Linux Plumbers Conference, 2018.

[13] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh et al., “Packet
transactions: High-level programming for line-rate switches,” in ACM
SIGCOMM, 2016, pp. 15–28.

[14] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou et al., “Lyra: A
cross-platform language and compiler for data plane programming on
heterogeneous ASICs,” in ACM SIGCOMM, 2020, p. 435–450.

[15] P. G. Patra, C. E. Rothenberg, and G. Pongracz, “Macsad: High
performance dataplane applications on the move,” in IEEE HPSR, 2017.

[16] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav et al., “P4fpga:
A rapid prototyping framework for p4,” in Proceedings of the Symposium
on SDN Research, 2017, pp. 122–135.

[17] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in USENIX NSDI, 2015.

[18] “Netronome programmer studio 6.0 software development
kit,” https://opennetworking.org/wp-content/uploads/2021/05/
2021-P4-WS-Vladimir-Gurevich-Slides.pdf, accessed: 2022-09.

[19] Intel Corporation, “Intel p4 studio,” https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
p4-suite/p4-studio.html, accessed: 2022-09.

[20] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma et al.,
“Switch code generation using program synthesis,” in ACM SIGCOMM,
2020.

[21] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Composing
dataplane programs with µP4,” in ACM SIGCOMM, 2020, p. 329–343.

[22] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik et al., “dRMT:
Disaggregated Programmable Switching,” in ACM SIGCOMM, 2017.

[23] “Bitbucket code repository of [17],” https://bitbucket.org/lavanyaj/
switch-compiler/src/master/, accessed: 2020-08-19.

[24] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of NP-completeness,” 1978.

[25] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approximation
and online algorithms for multidimensional bin packing: A survey,”
Computer Science Review, vol. 24, pp. 63–79, 2017.

[26] R. Berghammer and F. Reuter, “A linear approximation algorithm for bin
packing with absolute approximation factor 32,” Science of Computer
Programming, vol. 48, pp. 67–80, 2003.

[27] D. Simchi-Levi, “New worst-case results for the bin-packing problem,”
Naval Research Logistics, vol. 41, pp. 579–585, 1994.

[28] J. K. Lenstra and A. Rinnooy Kan, “Complexity of scheduling under
precedence constraints,” Operations Research, vol. 26, pp. 22–35, 1978.

https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://www.barefootnetworks.com/products/brief-tofino-2
https://www.barefootnetworks.com/products/brief-tofino-2
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://bitbucket.org/lavanyaj/switch-compiler/src/master/
https://bitbucket.org/lavanyaj/switch-compiler/src/master/

Balázs Vass received his MSc degree in applied
mathematics at ELTE, Budapest in 2016. He finished
his PhD in informatics in 2022 on the Budapest Uni-
versity of Technology and Economics (BME). His
research interests include networking, survivability,
combinatorial optimization, and graph theory. He
was an invited speaker of COST RECODIS Training
School on Design of Disaster-resilient Communica-
tion Networks ’19. He is a TPC member of IEEE
INFOCOM ’23, ’24, and ’25.

Erika R. Bérczi-Kovács received the M.Sc. Degree
in Mathematics and the Ph.D. degree in Applied
Mathematics from the Eötvös Loránd University
(ELTE), Budapest, in 2007 and 2015, respectively.
She is currently a senior lecturer at the Department
of Operations Research, ELTE, and she is with
the MTA-ELTE Egerváry Research Group on Com-
binatorial Optimization. Her research interests are
combinatorial optimization and operations research.
She was a recipient of NaNa 2016 Best Paper Award.

Ádám Fraknói received his BSc in mathematics
from the Eötvös Loránd University (ELTE), Bu-
dapest, Hungary. Now he is a master’s student also
at ELTE mathematics. He has acquired first prizes
at the university-wide and nationwide Scientific Stu-
dents Association Conferences, as well as various
scholarships. He is interested in theoretical computer
science and machine intelligence.

Costin Raiciu received his B.Sc. and M.Sc. from
University Politehnica of Bucharest in 2003 and
2004, and his PhD from University College London
in 2011. Costin is now Professor in the Computer
Science Department of University Politehnica of
Bucharest. His research interests include networking,
systems and verification. Costin is keen on pushing
his research work into production, with Multipath
TCP, and EQDS example protocols undergoing stan-
dardization or already deployed.

Gábor Rétvári received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Budapest
University of Technology and Economics in 1999
and 2007, where he is now a Senior Research Fellow.
His research interests include all aspects of net-
work routing and switching, the programmable data
plane, and the networking aspects of cloud native
computing. He is a co-founder and CTO of L7mp
Technologies, a company specializing in running
large-scale WebRTC services over Kubernetes.

APPENDIX

A. Linear time algorithms for optimal throughput

Claim 1. Pipeline embedding under the INF-CAP model can
be solved to optimality in linear time: O

(
|V |+ |E|

)
.

Proof: First, we add a hypothetical MAT L to the TDG
with arcs (L, li) to all source nodes of the TDG. Then, for
each j, embed all MATs of level L(j) stage j. It is easy to
see that this algorithm returns a valid TDG embedding with
the minimal theoretically possible stages, that is, the vertex-
length of the longest directed path in the TDG.

Theorem 2. For model BASIC, P = max
(⌈
|VM |
M

⌉
,
⌈
|VA|
A

⌉)
is the optimal period, and a feasible P -periodic scheduling
can be found in linear time: O

(
|E|+ |V |

)
.

Proof: It is clear that d|VM |/Me and d|VA|/Ae are lower
bounds for P . To prove the other direction, let v1, v2, . . . , vn
be an arbitrary topological order of the nodes (i.e. i < j
if vivj ∈ E). We will construct a scheduling S of the
nodes in this order in the following way, filling up the
modulo classes one by one, starting from 1 to P . We denote
the number of match and action nodes already scheduled
#m and #a, respectively. S(v1) := 1. For j > 1, let
δj := max{S(vi) + l(vi) | vivj ∈ E} if vj has at least
one entering arc, otherwise δj := S(vj−1). If vj ∈ VM , let
S(vj) := min{k ≥ δj | k ≡ b#m/Mc}. Similarly, if vj ∈ VA,
let S(vj) := min{k ≥ δj | k ≡ b#a/Ac}. Note that by choice
of P , we do not overbook any clock cycle. The total number of
steps for calculating all δi values is O(|E|). Then, determining
values S(i) and maintaining counters #m and #a take O(|V |)
time, that gives a total running time of O

(
|E|+ |V |).

B. NP-Hardness and inapproximability proofs

In RMT models, our aim is to find an embedding of
the given TDG that uses the least stages possible. For the
NP-hardness and inapproximability results we consider the
decision version of these problems, which asks if a given
number of k stages given in the input is enough to embed
a given TDG (or alternatively, if a TDG can be mapped on
a given switch architecture). Clearly, the decision version of
every investigated model is in NP .

Lemma 3. The decision version of RMT model 1D1R is NP-
complete, and the optimum cannot be approximated better than
a ratio of 3/2, unless P=NP .

Proof: We reduce our problem to the NP-complete
PARTITION [24], where the task is to decide whether a
multiset of positive integers a1, . . . , al of sum 2K can be
partitioned into two sets of sums K. Given a PARTITION
instance, we consider the 1D1R instance where for each value
ai a node vi is created with node size nvi = ai. No arcs are
added to the TDG graph. Let the size of the stages be K. The
given PARTITION instance has a solution if and only if the
corresponding 1D1R TDG can be embedded in 2 stages, which
proves NP-completeness for k = 2. The inapproximation ratio
3/2 follows from the NP-completeness of case k = 2.

Note that the ratio above holds both for small and large
optimal stage numbers, since one can take sequentially each
after multiple (different) instances as the one described in the
proof to create a compound instance of arbitrarily large size.

Lemma 4. The decision versions of RMT models
1D1R-hsplit, 2D1R, 2D2R, and 2D2R-T/S are NP-complete,
and the optimum cannot be approximated better than a ratio
of 5/4, unless P=NP .

Proof: It is enough to prove the NP-completeness
and inapproximability for model 1D1R-hsplit, since it is
a special case of both 2D1R, 2D2R, and 2D2R-T/S. We
will prove its NP-completeness by reducing an instance
of EQUAL CARDINALITY PARTITION (ECP) problem,
which is known to be NP-complete [24, version of SP12]. We
note that a visual representation of the upcoming construction

Problem denomination INF-CAP 1D1R 1D1R-hsplit 2D1R 2D2R 2D2R-T/S BASIC IPC1 WIDTH W-IPC1 W-IPC2
M

in
im

iz
in

g
th

e
#s

ta
ge

s
(N

)
or

pe
ri

od
(P

)
is

..
. solvable

in linear time Claim 1 7 Thm. 2 7

NP-hard and inapproximable
in polynomial time (unless P=NP)

7 Lemma 3 Lemma 4 7 Thm. 6 Thm. 7

constant approximable
in linear time (Claim 1) Claim 8 Thm. 9 Claim 10 Claim 11 Claim 12 (Thm. 2) Thm. 16 Thm. 13 Thm. 15 Thm. 17

TABLE VII: The formal proofs of our different propositions can be found in the above-mentioned Claims/Lemmas/Theorems.

used in the proof can be found in [1, Fig. 2]. Let an ECP
instance be given: positive integer values a1, . . . , a2k such that∑2k
i=1 ai = 2K. The task is to decide whether there is a k-size

subset I of the values such that
∑
i∈I ai = K.

We construct a corresponding 1D1R-hsplit problem. Con-
sider a TDG with tables f1, . . . , f2k, s1, . . . , s2k, and
l1, . . . , l2k to embed, and stages 1, 2, 3, and 4 having k, K+k,
K + k and k rows, respectively. Each {(fi, si), (si, li)} ⊆ E.
Node demands are nsi = ai and nfi ≡ nli ≡ 1, so∑
i∈{1,...2k} nsi = 2K. Due to that the total sum of stage sizes

equals the total sum of node demands, hsplit cannot be used
in a valid embedding, since it would cause not to fully utilize
the capacities of a stage from among stages 1, . . . , 4, and some
fragments of some tables could not be embedded in any stage.
More precisely, the only way these tables can fit in the 4 stages
is if there exists a set of indexes I ⊂ {1, . . . , 2k}, |I| = k such
that for each i ∈ I , tables fi are assigned to stage 1, si are
in stage 2, li are in stage 3, while for j ∈ {1, . . . , 2k} \ I ,
fj assigned to stage 2, sj are in stage 3, li are in stage 4,
and

∑
i∈I nsi = K. Thus a valid embedding into four stages

exists exactly if there exists such an I (|I| = k) for which∑
i∈I nsi = K. Next, we extend the above setting to get a

proper PEP instance with equal stage capacities for which the
above reasoning still holds. To this end, we modify stage 1
and stage 4 to have K + k rows (just as stages 2 and 3).
Further, we add to the TDG nodes F and L, both having a
height of K. Finally, for each si, (F, si) and (si, L) is added
to E (see also Fig. 2 in [1]). Since in the above setting, the
TDG can be embedded in 4 stages exactly if the embedded
ECP problem instance has a solution, the NP-completeness of
the problem follows. The inapproximation ratio 5/4 follows
from the NP-completeness of case k = 4.

Claim 5. The decision version of pipeline embedding under
2D2R-T/S is strongly NP-complete.

Proof: Consider the decision version of pipeline embed-
ding, where the question is whether the TDG can be embedded
into a given number of stages. Let all the stages and MATs
have equal widths (i.e., for all v ∈ V , wv = wS = wT), thus
the second size dimension can be ignored. Let all the MATs be
assignable to any of the resources (that is, sram(v) is true for
every node v), thus we can characterize the size of each stage
with only the number of its rows, and maximum number of
tables that can be assigned to the stage, that are nS +nT and
τ , respectively. Let the pipeline have m stages of size B ∈ Z+

(B = nS + nT), each stage capable of storing at most τ = 3
tables. Let the TDG to be embedded consist of 3m MATs of
size B/4 < nv < B/2 (for every v ∈ V) without any TDG
dependencies. The sizes of the nodes add up to mB. Then,
the decision of whether the TDG can be embedded into the

pipeline is equivalent to the 3-PARTITION problem, which
is known to be strongly NP-complete [24, SP15].

Now we turn to the complexity of the dRMT models.

Theorem 6. The decision version of model IPC1 is NP-
complete. Furthermore, the optimal period cannot be approx-
imated better than a ratio of 4/3 unless P=NP .

Proof: Consider an instance of the scheduling problem
P |prec, pj = 1|Cmax. It is NP-complete to decide whether
Cmax > 3 for this problem [28]. We construct a corresponding
IPC1 instance the following way: nodes correspond to jobs
(all nodes are action nodes), the ODG graph is the graph of
precedence constraints with latency constant 1 and A is the
number of machines. Then the optimal P is 3 if and only if
Cmax = 3 (see Lemma 14).

Theorem 7. The decision versions of models WIDTH, W-IPC1
and W-IPC2 are all NP-complete, and the optimal periods
cannot be approximated better than a ratio of 3/2, unless
P=NP .

Proof: We use a reduction from the NP-complete
PARTITION PROBLEM [24]. Let a multiset Z of positive
integers z1, . . . , zn be given, where

∑n
i=1 zi = 2K. We create

a model instance such that the optimal period P is 2 if and
only if Z can be partitioned into two subsets of equal sum,
independent of the value of IPC: consider an instance with n
action nodes a1, . . . , an and empty control-flow dependencies
(i.e. E = ∅). Let wai := zi and A := K, and let P denote the
optimal period. Then P ≥

∑n
i=1 wai/A = 2K/K = 2. On

one hand, if Z has an equal partition into two subsets, then
clearly P = 2 (for every IPC value). On the other hand, if
P = 2, then there is a value F such that each clock cycle i is
full with respect to A = K if i ≥ F . The scheduling induces
a partition P of V into sets P = {R1, . . . , Rk} representing
nodes of a package in the same clock cycle. Then consider
subset I of P containing all sets Ri scheduled for clock cycle
F (possibly from different packets):

∑
i∈I
∑
ai∈Ri

wai = K.
Then I and P \ I induce an equal partition of Z indeed.

Corollary 1. For any given value k of the Inter Packet Con-
currency, the decision version of a DPEP model W-IPC-k is
NP-complete and the optimal period cannot be approximated
better than a ratio of 3/2, unless P=NP .

C. Linear time constant approximation algorithms

For RMT models, the basic idea behind our algorithms and
proofs of constant approximations is the following. The TDG
nodes are grouped in sets L(1),L(2), . . . , (called levels) such
that every TDG arc is ‘forward’, i.e., for a TDG arc (a, b),
a ∈ L(i) and b ∈ L(j) means i < j. This way, nodes of each

set L(i) can be mapped to the same stages, dealing with most
of the precedence constraint issues. For all PEP models, we
prove that, among the stages used in our embedding, with at
most c1 ·OPT exceptions, each stage is full at least in a ratio
of 1/c2 (where OPT is the optimal stage number). This induces
a (c1 + c2)-constant approximation.

Note that we only calculate a plan for the embedding. That
is, 1) in case of PEP models 1D1R, 1D1R-hsplit, and 2D1R,
for each table, we only store its starting stage and position,
and its end stage and position, respectively; and 2) in case of
models 2D2R, and 2D2R-T/S we store these values for each
table for both kind of resources (TCAM and SRAM). Clearly,
the actual embedding phase needs some additional time. Since
our outputs are constant approximations of the optimal stage
number OPT, this additional time scales linearly not only with
the stage sizes, but with OPT too.

Claim 8. The optimum of 1D1R can be 3-approximated in
linear time: O

(
|V |+ |E|

)
.

Proof: We partition the nodes into levels as in Alg.1 for
INF-CAP, where level L(i) contains the set of nodes that
have a longest ending path containing i nodes. We embed
levels L(1),L(2), . . . each after as follows. After all levels
preceding L(j) were embedded, we start a new stage si for
the MATs in L(j). Using the linear-time algorithm of [26],
we calculate a (3/2-approximate) solution for the bin packing
problem initialized with the stage size and MAT sizes of level
L(j). We assign one of the next available stages for each of
these bins. We claim that this gives a valid embedding. The
output uses at most 3·OPT stages since 1) the stages of each
level are at least half-full, except for the last stage, and 2) the
last stages of the levels are at most OPT.

Speaking of the complexity, all of computing the levels,
algorithm of [26], and all the rest of computations take
O
(
|V |+ |E|

)
time, completing the proof.

Theorem 9. Alg. 2 gives a 2-approximation for the pipeline
embedding problem under 1D1R-hsplit in linear time:
O(|V |+ |E|).

Proof: Correctness: For any u, v ∈ V , (u, v) being a
dependency arc means λ(v) > λ(u) in the output, where λ(w)
denotes the stage table w is embedded. Thus, Alg. 2 returns
a correct embedding. 2-approximation: In every level i only
the last stage S(Ei) can be not full. The number of these last
stages is the length of the longest path in the graph, which is
at least OPT. On the other hand, OPT is at least the number of
stages fully utilized by Alg. 2. Consequently, it uses at most
2 ·OPT stages. Complexity: At line 1, we return a topological
ordering, that can be done in O(|V |+|E|). Since the arithmetic
operations have constant cost in our models, the while cycle
also runs in the proposed O(|V |+ |E|) time.

Claim 10. The optimum of 2D1R can be 3-approximated in
linear time: O

(
|V |+ |E|

)
.

Proof: We create levels L(i) as in Alg. 1. For a level
i we partition tables into groups Vw,k according to width
as described in §IV-C. First nodes in Vw,0 are embedded in
d
∑
v∈Vw,0

nv/nSe stages, applying hsplit if needed. Next,

nodes in Vw,1 are embedded. They need d
∑
v∈Vw,1

nv/2e
rows, starting with the first row unoccupied by Vw,0. Note
that the last row may not be at least half full, because the
second column can remain empty. Generally, when we pack
MATs in Vw,k assume that d columns of length 1/2k−1 are
left empty in the last row after embedding nodes in Vw,k−1.
Then if

∑
v∈Vw,k

nv < 2d, then we cut these tables into 1-
row pieces and embed them all into this last row. Otherwise,
we open d(

∑
v∈Vw,k

nv − 2d)/2ke new rows and embed the
tables continuously (again applying hsplit if needed) into 2k

columns nearly equally, i.e., such that only columns in the last
row may remain empty.

To show 3-approximation, let OPT denote the minimal
number of stages the TDG can be mapped to. Let h denote
the number of levels in the TDG, and for each level L(i),
let S[Ei] denote the last stage where nodes of the level are
matched. Since at least half of the memory of each row of
each stage S[Ei−1 + 1], . . . ,S[Ei] is used, Eh − h ≤ 2 · OPT.
Also, OPT ≥ h, since we need at least as many stages as the
number of levels we have, so Eh ≤ 3 · OPT. To decipher the
complexity of the 2D1R version of Alg. 2, we only analyze the
additional calculations which have to be done compared to the
1D1R-hsplit version Alg. 2 (that runs in O

(
|V |+|E|

)
by Thm.

9). Partitioning of tables in each level by their width can be
done in O(|V |) total time, since we supposed that wS/wv and
wT/wv are O(1). For each table, we need O(1) time to compute
its start and end coordinates, meaning O(|V |) complexity.

Claim 11. The optimum of 2D2R can be 8-approximated
in linear time: O

(
|V | + |E|

)
. If wT ≥ wS , it can be 5-

approximated in the same complexity.

Proof: In the following, we prove that the 2D2R version
of Alg. 2 is an 8-approximation in general, then we will discuss
why the approximation factor decreases by 3 if wT ≥ wS .

First, we concentrate on a given level L(i). Let us recall that
the last stage occupied by stage L(i) is denoted by S[Ei−1].
When embedding to TCAMs (just like as in 2D1R version of
Alg. 2), we scale the width unit to the width of the TCAM.

We classify the set of MATs in the current level into three
groups S, T , and A, according to the type of memory they can
be embedded into (S for SRAM, T for TCAM and A for all),
and we also partition each set further into groups Sk, Tj and
Ak,j according to widths as follows.

Let Sk denote the set of MATs in S of length wS ·
[1/2k+1, 1/2k) and let Tj denote the set of MATs in T of
length wT · [1/2j+1, 1/2j). Finally, we partition the MATs in
A according to both their relative widths to wS and wT : Ak,j
denotes the set of MATs in A of length wS · [1/2k+1, 1/2k)∩
wT · [1/2j+1, 1/2j); we note that for a fixed value k there are
at most two possible values j such that Ak,j is not empty.

We state the following. 1) With packing Tj in 2j columns
(for j = 0, 1, . . . , similarly to the 2D1R case), T , for some
ti, occupies stages S[Ei−1 + 1], . . . ,S[Ei−1 + ti], that (apart
from the last of them) have their TCAMs at least half full. 2)
If the width of SRAMs is greater than the width of TCAMs
(i.e., wS > wT), then S may not be empty. With packing Sk
in 2k columns (for k = 0, 1, . . .), S, for some si, occupies
stages S[Ei−1 + 1], . . . ,S[Ei−1 + si], that (apart from the last

of them) have their SRAMs at least half full. If S is empty, let
si = 1. 3) Starting from stage S[Ei−1 + max{ti, si}+ 1], we
pack the MATs Ak,j (for k = 0, 1, . . . with appropriate j and
j+ 1 values) first in 2k columns in SRAMs in a stage then in
2j columns in TCAMs in the same stage. Thus A, for some
li, occupies stages S[Ei−1 + max{ti, si} + 1], . . . ,S[Ei−1 +
max{ti, si}+ li], that (apart from the last of them) have both
their SRAMs and TCAMs at least half full.

We can see by Claim 10 that t =
∑

levels(ti − 1) ≤ 2 ·OPT
(since at least t TCAMs are at least half full, and the optimum
embedding has to have enough TCAM capacity to store the
TCAM-only tables), and similarly,

∑
levels(si − 1) ≤ 2 · OPT.

This means
∑

levels(max{ti, si} − 1) ≤ 4 · OPT.
Similarly, tables that can be mapped to both TCAMs and

SRAMs, fill at most another ≤ 2 · OPT stages at least half
full (i.e.

∑
levels(li − 1) ≤ 2 · OPT), meaning at most 6 · OPT

stages. For each level, we have not counted i) the last stage
it uses, and (maybe) ii) the last stage storing SRAM-only or
TCAM-only tables (i.e., its max{ti, si}th stage). Since there
are ≤ OPT levels, we can conclude that the algorithm uses at
most (6 + 2) · OPT = 8 · OPT stages. In case of wT ≥ wS ,
si ≡ 0 for all i, and our upper bound shrinks to 5 · OPT,
because then 1) (implicitly) SRAM-only tables do not exist,
and thus, they do not have to be taken into account, and 2)
if neither the level’s ti + li

th stage nor the TCAMs of its tith

stage are at least half full, then by re-allocating some entries
from the ti + li

th stage to the tith stage, we may either empty
the ti + li

th stage, or can make ti
th stage at least half full.

Note that in MATs involved in this entry-reallocations are in
the end cut in ≤ 4 ·wS/wv = O(1) pieces, and we only need
to specify the start and end places of the reallocated entries.

Runtime complexity of the 2D2R version of Alg. 2: for each
level, sets Tk and Sj can be determined in linear time (simi-
larly to sets Vw,k in 2D1R). A can be partitioned to sets Ak of
MATS having widths wT · [1/2k+1,1/2k) in this time. Then, it
is easy to find the right j s.t.: wS/2j ∈wT ·[1/2k+1,1/2k), with
which we can subdivide each set Ak into two (possibly empty)
subsets regarding their width relative to wT . After computing
the levels, we assign each table to a partition ≤ 2 times. Thus,
the 2D2R version of Alg. 2 runs in O(|V |+|E|).

Claim 12. The optimum of 2D2R-T/S can be 9-approximated
in linear time: O

(
|V | + |E|

)
. If wT ≥ wS , it can be 6-

approximated in the same complexity.

Proof: We again create levels L(i) as in Alg. 1. Similarly
to the previous algorithm for 2D2R, in each level i, we classify
the set of MATs into three groups T i, Si and Ai, and we also
partition each set further into groups T ij , Sik and Aik,j accord-
ing to widths as in the previous algorithm. First we embed
MATs in T i into TCAMs in stages S(Ei−1+1), . . . ,S(Ei−1+
ti) similarly to the previous algorithm, the only difference is
that when the number of tables embedded in a stage reaches
τ , we open a new stage. Then we embed MATs in Si into
SRAMs of stages S(Ei−1 + ti + 1), . . . ,S(Ei−1 + ti + si)
the same way. Finally, MATs in Ai are embedded in stages
S(Ei−1 + ti + si + 1), . . . ,S(Ei−1 + ti + si + ai). Now prove
the approximation ratio. Let SiT,w denote the set of stages
where TCAMs are at least half full with MATs from Ti

with respect to width, and let SiT,τ denote the set of stages
not in SiT,w that contain τ MATs from Ti. Note that stages
S(Ei−1 + 1), . . . ,S(Ei−1 + ti − 1) belong to exactly one of
these sets. Then

∑
levels(|SiT,w|) ≤ 2 · OPT. We can similarly

define sets SiS,w, SiS,τ and SiA,w, SiA,τ for stages embedding Si

and Ai, respectively. We also have
∑

levels(|SiS,w|) ≤ 2 · OPT
and

∑
levels(|SiA,w|) ≤ 2 ·OPT. There are at most three stages

on every level that do not belong to any of the set above:
S(Ei−1 + ti),S(Ei−1 + ti + si) and S(Ei−1 + ti + si + ai).
Stages S(Ei−1 + ti) and S(Ei−1 + ti + si) can be unified
into one stage if the number of tables is at most τ . Otherwise
they can be unified into two stages such that one of them
contains τ stages, thus it can be added to SiA,τ and eventually
there are at most two stages on every level that do not contain
τ tables and are not at least half full. The total number of
the latter is at most 2 · OPT. Finally, the number of stages
containing τ tables can be estimated together: since hsplit is
only applied when a stage becomes at least half full, every
original MAT has a piece in at most one stage in SiT,τ , thus∑

levels(|SiT,τ | + |SiS,τ | + |SiA,τ |) ≤ OPT. All in all, the total
number of stages is at most (2+2+2+2+1) ·OPT = 9 ·OPT.
As for the case when wT ≥ wS that is, Si = ∅, we can create
sets SiT,w,SiT,τ , SiA,w,SiA,τ as in the first case and embed
them the same way. Stages S(Ei−1 + ti) and S(Ei−1 + ti+ai)
may not be part of these sets. Similarly to the previous model
we can rearrange these stages in order to have at most one
such stage. If the TCAM part of S(Ei−1 + ti + ai) is empty,
we can unify it with S(Ei−1 + ti). If it is not empty, then
its SRAM part is at least half full. We can re-embed these
stages into stage S(Ei−1 + ti) the following way: we copy the
SRAM part of stage S(Ei−1+ti+ai) and consider the union of
MATs in TCAMs S(Ei−1+ti) and S(Ei−1+ti+ai). We start
embedding them into the TCAM part of stage S(Ei−1 + ti)
the same way as before until 1) all tables are embedded 2) the
TCAM (and thus the whole stage) becomes half full, and we
can add it to SiA,w 3) the total number of tables reaches τ and
we can add it to SiA,τ . In the latter two cases we embed the
remaining tables to stage S(Ei−1 + ti+ai). We have similarly
that

∑
levels(|SiT,w|) ≤ 2 · OPT and

∑
levels(|SiA,w|) ≤ 2 · OPT

and
∑

levels(|SiT,τ | + |SiA,τ |) ≤ OPT. Moreover, for every
level there is at most one stage not considered above, giving
(2 + 2 + 1 + 1) · OPT = 6 · OPT.

Now, we turn to the dRMT models. First, we describe a
simple approximation algorithm to model WIDTH, which is
based on an observation that the precedence constraints can
be made irrelevant in terms of minimizing period P .

Theorem 13. For model WIDTH, a scheduling having a
period at most 3/2 times the optimal can be calculated in
O(|V |+ |E|) time.

Proof: First, we ignore the precedence constraints, and
consider two bin-backing problems with node widths as object
weights and A,M as bin capacities. Using the linear-time 3/2-
approximation algorithm of [26], we separately sort the match
and action nodes in a number of M ′ and A′ bins, respectively.
Thus, a scheduling with period P = max{M ′, A′} would
be a 3/2-approximation on the optimal period. Now we show

that such a scheduling exists. Let Bim and Bia denote the ith

bin of match and action nodes, respectively. For each i ∈
{1, . . . , P}, we assign Bim and Bia to residue class i. Now, we
take into count the precedence constraints again, and take an
arbitrary topological order of the nodes v1, . . . , vn. For each
j ∈ {1, . . . , n}, we schedule vj (being part of a batch Biv)
to the smallest positive integer clock cycle S(vj) that is ≡ i
mod P , and is greater or equal with S(v)+l(v), for each node
v directly preceding vj in the ODG (that is, (v, vj) ∈ E). Note
that if vj does not have any in-arc, it is scheduled to i.

In the following, we describe approximation algorithms for
models IPC1, W-IPC1, and W-IPC2. The idea is to find a
proper order of the nodes (called simplified scheduling) that
can be transformed into a scheduling in a straightforward way.

Definition 3. Functionσ :V→N+ is a simplified scheduling, if
1) σ(m) 6= σ(a) for every m ∈ VM , a ∈ VA,
2) σ(vj)− σ(vi) ≥ 1 for every arc (vi, vj) ∈ E,
3) if σ−1(k) = ∅ for a k ∈ N+, then σ(v) < k for ∀v ∈ V ,
4) ∀t ∈ N+ :

∑
m∈VM , σ(m)=t wm ≤M,

5) ∀t ∈ N+ :
∑
a∈VA, σ(a)=t

wa ≤ A.
Let L(σ) denote the length of the simplified scheduling, so
the largest clock cycle that has an embedded node: L(σ) =
max{i|σ−1(i) 6= ∅}.

Let A denote the number of clock cycles with at least one
embedded action node. Formally, A := #{i ∈ N+|σ−1(i) ∩
VA 6= ∅}. We define M similarly with match nodes.

Lemma 14. For dRMT models IPC1 and W-IPC1, a given
simplified scheduling σ can be transformed to a scheduling
with a period of P := max (A,M) in O(|E|+ |V |) time.

Proof: We expand the simplified scheduling σ to a
scheduling with period P in linear time. Formally, a schedul-
ing S is an expansion of a simplified scheduling σ if there
exists a strictly monotone function f : N+ → N+ such that
S(v) = f(σ(v)). We have to show that σ has a feasible P -
periodic expansion. For this, we will make sure that there are
no two clock cycles with the same type of nodes embedded
into the same residue class modulo P , which will guarantee
constraints (1)-(4) of a feasible scheduling. We determine
values f(1), . . . , f(L(σ)) in this order, and we fill up modulo
classes with match and action nodes in the order of 1, 2, . . . , P
(we will use each modulo class once for both match and action
nodes, respectively). Let the smallest modulo classes not used
by match and action nodes be pm and pa, respectively. Let
f(1) = 1, and for 1< i≤L(σ) we do as follows. If there is
an arc entering a node in σ−1(i) then the earliest clock cycle
σ(i) may be embedded in is δ(i) :=max{f(σ(v))+l(v)|vw ∈
E, σ(w) = i}, otherwise δ(i) := f(i− 1) + 1. Supposing
σ−1(i) is a set of match nodes, we assign these nodes to
clock cycle f(i) := min{k ≥ δ(i)| k ≡ pm}, and increase
pm by 1. Similarly, if σ−1(i) is a set of action nodes,
f(i) := min{k ≥ δ(i)|k ≡ pa}, and pa is increased by 1.
Note that there is always some modulo class left to embed
the sets of nodes into, since P ≥M and P ≥ A, and former
clock cycles of the same type cannot cover all residue classes
modulo P . Also note that, in every congruence class, there
is at most 1 CPU cycle where match and action nodes are

embedded, thus the expansion is valid also if IPC constraints
are present. Finally, the width constraints were already tackled
by the simplified scheduling, thus the resulting scheduling
respects width constraints also. The method is summarized in
Alg. 4. Determining values δ(i) and f(i) take O(|E|+|V |).

Theorem 15. For model W-IPC1, a scheduling having a
period at most 4 times the optimal can be calculated in
O(|V |+ |E|).

Proof: Inspired by Lemma 14, in Alg. 3, we first find a
simplified scheduling σ. We create levels L(i) as in Alg. 1.
For each level we embed match and action nodes in separate
clock cycles, applying the linear-time algorithm in [26]. Thus,
for every level, there is at most one clock cycle containing
match nodes that is not at least half full (and the same applies
for action nodes). Now we prove that the algorithm is a 4-
approximation. We partition the clock cycles into four groups.
Let Hm and Ha denote those clock cycles that are at least half
full with match and action nodes, respectively, and similarly,
let Nm and Na denote the list of those that are not half full. We
can assume w.l.o.g. that M ≥ A. From Lemma 14, we get that
the constructed simplified scheduling can be expanded into
feasible scheduling with period M . Let Po denote the optimal
period for the problem. We know that Po ≥

∑
m∈VM

wm/M
(note that the under-estimation of the optimal period Po was
indifferent to any IPC constraint). Since

∑
v∈VM

wm/M ≥∑
m∈σ−1(Hm) wm/M ≥ |Hm|/2 and we get |Hm| ≤ 2Po.

Now we give an upper bound for |Nm|. If the number of levels
is denoted by h, then there is a path P of length h in DO.
Note that for any path Q we have that |V (Q)∩VM | ≤ Po and
|V (Q)∩VA| ≤ Po so |V (Q)| ≤ 2Po. Hence |Nm| ≤ |V (P)| ≤
2Po and so |M | = |Hm| + |Nm| ≤ 4Po, which proves the
theorem. The runtime of the algorithm is O(|V |+ |E|).

Theorem 16. Model IPC1 can be 3−approximated in
O(|V |+ |E|) time.

Sketch of proof: We can simplify the previous algorithm
by noting that all nodes have unit width, so we can embed
nodes to get full clock cycles (with either match or action
nodes only), apart from the last clock cycle in each level and
each type. Let Fm and Fa denote the set of full clock cycles.
Then we have |Fm| ≤ Po, which gives a 3-approximation.

Finally, we can derive an approximation algorithm for the
W-IPC2 model from the one given for the W-IPC1 .

Theorem 17. Model W-IPC2 can be 8−approximated in
O(|V |+ |E|) time.

Proof: Let P opt
1 and P opt

2 denote the optimal periods for
W-IPC1 and W-IPC2, respectively for models with the same
input parameters (except IPC). Let S denote a feasible P -
periodic scheduling for W-IPC2. We transform S into an S′

feasible 2P -periodic scheduling for W-IPC1. Since IPC = 2,
for each residue class i modulo P , there are at most two
non-empty clock cycles c1, c2 congruent i modulo P . If
S(v) = c1 then we define S′(v) := 2c1 whereas if S(v) = c2
then S′(v) := 2c2 − 1, so P opt

1 ≤ 2P opt
2 . Let P ∗ denote the

period given in Thm. 15. Then P ∗ ≤ 4P opt
1 ≤ 8P opt

2 .

	Introduction
	Models and Main Results
	P4 program representations and example embeddings
	Formal Models and Problem Statements
	Main results

	Tractable simplifications
	RMT model INF-CAP: Mapping Concurrency
	dRMT model BASIC

	(In)Approximability in RMT Models
	1D1R: Adding Simple Resource Constraints
	1D1R-hsplit: Table Splitting
	2D1R: Two-dimensional Resources
	2D2R: Both SRAMs and TCAMs Available
	 2D2R-T/S: Constrained Number of Tables per Stage
	2D2R-PISA: Fully-fledged PISA Model

	(In)Approximability in dRMT models
	IPC1: Inter-packet concurrency
	WIDTH: Variable table widths
	W-IPC1: Main dRMT model
	W-IPC2: Loose IPC constraints

	Discussion
	Conclusion
	References
	Biographies
	Balázs Vass
	Erika R. Bérczi-Kovács
	Ádám Fraknói
	Costin Raiciu
	Gábor Rétvári

	Appendix
	Linear time algorithms for optimal throughput
	NP-Hardness and inapproximability proofs
	Linear time constant approximation algorithms

