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Abstract—For proper evaluation and optimization of the ex-
pected availability of a backbone network service, two related
very fundamental modeling and algorithmic questions are the
following. 1) Realistically estimate the availability of a given 𝑠𝑡-
path for some source and target pair of communicating nodes
𝑠 and 𝑡, and 2) Find a safest 𝑠𝑡-path. For these, traditional
approaches suppose network element failures are independent.
In this paper, we show that, by not considering joint failure
probabilities, the traditional approaches may misguess the 𝑠𝑡-path
availabilities and, consequently, the total connection availability,
which can lead to more frequent Service Level Agreement
(SLA) violations and a financial burden on the Communication
Service Provider (CSP). Due to the inconsistent estimations, the
supposedly safest paths yielded by these approaches may turn
out to be suboptimal. On the positive side, we propose a fast
algorithmic approach, that, under some assumptions, returns
with a (truly) safest 𝑠𝑡-path accompanied by its exact expected
availability. When the aforementioned assumptions do not hold,
in our simulations, the proposed algorithmic scheme proved to
be a good heuristic, performing at least as well as the traditional
method.

Index Terms—survivable routing, safest path computation,
disaster resilience, network failure modeling, probabilistic shared
risk link groups, PSRLG, seismic hazard

I. INTRODUCTION

Many mission-critical services rely on continuous network
connections, the quality of these connections being often mea-
sured by their Quality of Resilience (QoR) [1]. Examples of
such services include telesurgery and stock market operations,
both of which demand high reliability and availability. These
requirements depend on the underlying network infrastructure,
accurate failure modeling, and effective routing schemes (e.g.,
protection mechanisms). However, networks are typically de-
signed to handle only single link or node failures [2], or
dual-failure scenarios [3], which is inadequate for meeting
these stringent demands. Therefore, stricter Service Level
Agreements (SLAs) are necessary to meet the requirements of
these critical communication services, which are increasingly
relied upon by both governments and the general public.

An SLA is a formal contract between a service provider and
a subscriber that specifies the Quality of Service (QoS) pa-
rameters, also known as Service Level Specifications (SLSs),
detailing the technical requirements [4], [5]. The primary
metrics typically associated with QoS include packet loss,

packet delay, guaranteed throughput, and port availability [6].
Additionally, in 2002, the concept of ”service availability”
was introduced to measure the fraction of time a service is
available to customers [6]. A violation of the service avail-
ability may lead to a financial penalty for the communication
service provider (CSP), e.g., capped at 15% of its Quarterly
Payment [7]. Therefore, to meet availability demands and
avoid penalties, CSPs must carefully estimate and optimize
the availability of their services, with a particular focus on
primary paths that primarily deliver information. This involves
considering single, independent, and interdependent multiple
network element failures (e.g., those caused by natural dis-
asters). To ensure optimal QoR at minimal cost, CSPs must
accurately assess and optimize the availability of any source-
destination connection.

Decomposed, the two most important ingredients for a
thorough availability estimation are the following:

1) Modeling: translating the essence of the complex real-
world hazards that cause network element failures to
concise combinatorial datasets.

2) Computing: using these datasets, for any given node pair
𝑠 and 𝑡, to determine a reliable connection between them.
This connection can be a safest 𝑠𝑡-path, 𝑠𝑡-path pair, etc.

While recently, paper group [8]–[10] made remarkable
progress in issue 1), to the best of our knowledge, a thorough
study on efficiently computing a safest 𝑠𝑡-connection (issue 2))
remained open. This paper takes some steps towards tackling
this latter issue. In our simulations, our proposed fast algorithm
for efficiently computing a safest 𝑠𝑡-path consistently outper-
formed the traditional approach, always providing at least as
safe 𝑠𝑡-paths as the traditional approach did.

A. Related Works

Computing availabilities assuming independent single el-
ement failures is a well-investigated topic [11]–[16]. Also,
dealing with correlated failures has a long history in the form
of Shared Risk Groups (SRGs) (e.g., [11]–[14], [17], [18]).
Here, an SRG typically consists of a few network components
(links and nodes) with considerable risk of failing together. An
observation is that, in many applications (such as availability
estimations), the failure of a node 𝑣 has the same effect as



the failure of all the links incident to 𝑣. In these cases, it
is enough to deal with an appropriate list of Shared Risk
Link Groups (SRLGs), where each SRLG consists only of
links. Probabilistic extensions of the SRLG concept were
also proposed [8]–[10], [19], [20]. Notably, [10] proposed a
straightforward unified terminology related to the Probabilistic
SRLGs (PSRLGs) that will be used in this paper.

A natural approach (also taken by this paper) is to take
the disaster scenarios as input [21], that have been carefully
precomputed, e.g., based on historical hazard data. Unlike this,
much of the work on regional failures took a less principled
approach, and tackled the disaster modeling more heuristically
in their own way to address their given problem in network
planning. Some examples are finding the most vulnerable part
of the network [22]–[25], estimating the effect on the network
of a random disaster [26]–[28], (re)routing of connections to
minimize the impact of disasters [29], [30], and resiliency-
aware network design [31]–[34].

As of now, by [10], we have efficient methods to compute
and store the link failure correlation (instead of limiting the
set of disasters to a small number or wrongly assuming link-
failure events to be independent [35]–[37]). These methods
were already incorporated in complex frameworks for disaster
resilience [38], [39]. However, to the best of our knowledge,
the issue of efficiently computing a (truly) safest 𝑠𝑡-path (issue
2)) remained open.

B. Main Contributions

Motivated by the above, our paper delves into the study of
the correctness and efficiency of some safest path computation
algorithms. The main contributions of the paper are summa-
rized as follows:

• We show that, by not considering joint failure probabili-
ties, the traditional approaches may significantly misguess
the total connection availability, which can lead to more
frequent SLA violations and a financial burden on the
CSP. Due to this inconsistent (over)estimation, the sup-
posedly safest paths yielded by these approaches may turn
out to be suboptimal.

• We propose a fast algorithmic approach, that, for a graph
𝐺 = (𝑉, 𝐸), under some assumptions, returns with a
(truly) safest 𝑠𝑡-path accompanied by its exact expected
availability in 𝑂 ( |𝑉 | log |𝑉 |).

• We provide a proof of concept implementation and simu-
lation based on real-world network topologies and seismic
hazard data.

• Through the simulations, we show that, if the disaster data
does not obey Property 1 (to be explained), our proposed
method proves to be a good heuristic in guessing a safest
path, outperforming the traditional approach.

The rest of the paper is organized as follows. Sec. II
introduces our formal model and discusses some basic results.
In Sec. III, a fast algorithm is described, that under certain
circumstances, is guaranteed to compute a safest 𝑠𝑡-path. Fur-
ther, our simulation results are presented in Sec. IV. Finally,
Sec. V concludes our paper.

II. MODEL AND BASIC ALGORITHMS

The problem input consists of two parts. One is a connected
graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 (|𝑉 | ≥ 2) and edge set 𝐸 ,
along with a communication source-target node pair {𝑠, 𝑡} ⊆
𝑉 . The other part of the problem input encodes the joint failure
probabilities of link sets. For this, for a link set 𝑆 ⊆ 𝐸 , in
line with [10], [39], we define CFP(𝑆) (‘cumulative failure
probability of 𝑆’) to denote the probability that at least link
set 𝑆 (and maybe some other links too) will fail at the next
disaster. The second part of the input is CFP[𝐺], which is a
data structure containing all the CFP(𝑆) values, where we list
CFP(𝑆) only if CFP(𝑆) > 0. Note that in most of the natural
settings, CFP[𝐺] has a manageable size [40]. Also, while the
input CFP[𝐺] focuses only on common failures of links, if
necessary, these structures can store failure probabilities of
both links and node failures (see [10, Sec. V.]). The goal is
to find a safest 𝑠𝑡-path, i.e., a path between nodes 𝑠 and 𝑡 that
has a lowest chance that any of its links will fail under the
next disaster.

Throughout the theoretical reasoning, to get closer to the
practical time complexities in real-world backbone networks,
we use the following parameters. Δ is the maximal degree of
a node in 𝐺 (that is often ≤ 4). We denote the number of
link crossings by 𝑥 (typically, 𝑥 ≪ |𝑉 | because, usually, at
crossings, optical cross connects (OXCs) are deployed). For a
path 𝑃, the maximal number of network links that a disaster
hitting 𝑃 hits in 𝐺 is denoted by 𝜌𝑃 (i.e., 𝜌𝑃 := max{𝑆 ⊆
𝐸 |CFP(𝑆) > 0, and 𝑆 ∩ 𝑃 ≠ ∅}). Lastly, the length of a path
𝑃 is sometimes denoted by 𝑘 .

We note upfront that our fast algorithm to be presented in
Sec. III is guaranteed to return with a safest 𝑠𝑡-path if the
following Property holds:

Property 1: Any set in CFP[𝐺] is connected, and has a
diameter at most 2. That is, each of these sets is a subset of
links incident to a network node 𝑣 ∈ 𝑉 .

In certain real-world scenarios, the CFPs related to a net-
work, and encoding the hazards of some natural disasters,
fulfill Property 1. E.g., see Fig. 1, where, for a part of
the Interoute network [9], the CFPs representing the seismic
hazard are depicted. When Property 1 does not hold, our
algorithm can be viewed as a fast heuristic for finding safe
𝑠𝑡-paths.

Finally, we note that, in the complexity analysis, we use the
unit cost arithmetic model of computation, where the cost of
a basic operation with real numbers is 1. The basic operations
allowed here are +,−,×, /. The rationale behind the use of
the unit cost model is that the complexity stemming from
arithmetic operations in this model is negligible.

Next, we present the standard traditional trick for finding
a (supposedly) safest 𝑠𝑡-path in Sec. II-A, then, we discuss
exact methods for path availability computation in Sec. II-B.

A. The standard method and its limitations

The standard method for finding a supposedly safest 𝑠𝑡-path
that unrealistically assumes that network element failures are
independent goes as follows. For each link 𝑒 ∈ 𝐸 , we will
assume that the probability that 𝑒 fails is less than 1, i.e.,



0 ≤ CFP(𝑒) < 1 (otherwise, the always-failing link can be
deleted from the network). By assuming the independence of
the link failures, the availability 𝐴indep (𝑃𝑠𝑡 ) of an 𝑠𝑡-path 𝑃𝑠𝑡

can be expressed as

𝐴indep (𝑃𝑠𝑡 ) = Π𝑒∈𝑃 (1 − CFP(𝑒)). (1)

The following trick helps us to find a path that maximizes
the above expression. We take the logarithm of the RHS of
Eq. (1). Since the logarithm is a strictly monotone function,
the maximum of the new expression will be reached on the
same path(s) that also maximize Eq. (1). Since the logarithm
of a product is the sum of the logarithms, it is enough to
find a path maximizing

∑
𝑒∈𝑃 log(1 − 𝑝(𝑒)). Luckily, this is

equivalent of finding a path minimizing
∑

𝑒∈𝑃 − log(1− 𝑝(𝑒)).
This can be done by e.g., the Dijkstra algorithm [41], since
− log(1 − 𝑝(𝑒)) > 0 for all 𝑒 ∈ 𝐸 .

It is easy to see that this approach cannot compute the
exact availability of a path, thus it is not suitable for deter-
mining a safest 𝑠𝑡-path. To give an oversimplified example,
suppose we have two 𝑠𝑡-paths 𝑃1 and 𝑃2 made up of links
{𝑎, 𝑏}, and {𝑐}, respectively. Let CFP(𝑎) = CFP(𝑏) = 0.5,
CFP(𝑐) = 0.9, while the rest of the link sets have CFPs of
zero (including CFP(𝑎, 𝑏) = 0). Then, the availability of path
𝑃1 estimated by the standard method is just 0.25, which is
far better than the 0.1 reached by 𝑃1. Thus, the standard
method would recommend using path 𝑃1. In reality, however,
this is a terrible idea, since, with probability 1, either link
𝑎 or 𝑏 of path 𝑃1 is not working, thus its real availability
𝐴(𝑃1) = 1−CFP(𝑎)−CFP(𝑏)+CFP(𝑎, 𝑏) = 0. I.e., it is better
to use path 𝑃2.

Turning to a simple real-world example, Fig. 1 depicts a
part of the Italian telecom network Interoute [9] accompanied
by CFPs computed based on the seismic hazards. There, the
probability that route 𝑓−𝑑−𝑒 remains operational after the next
earthquake is calculated as ≈ .9602 by the standard approach,
compared to the real availability of ≈ .9570. This means a
7.7% underestimation of the unavailability.

B. Exact methods for computing the availability of a path

Given a path 𝑃, and known the list CFP[𝐺] of link sets
having a positive CFP, Alg. 1 depicts a very straightforward
way of computing the availability 𝐴(𝑃). Namely, by iterating
through the link sets in CFP[𝐺], and counting their CFP with
the right sign, it calculates the following sum:

𝐴(𝑃) =
∑︁
𝑆⊆𝑃

(−1) |𝑆 |CFP(𝑆), (2)

Algorithm 1: Computing the availability of a path 𝑃 in
graph 𝐺 by scanning through the whole list of PSRLGs

Input: Path 𝑃 = {𝑒1, . . . , 𝑒𝑘} in graph 𝐺 = (𝑉, 𝐸),
cumulative failure probabilities CFP[𝐺]

Output: Availability 𝐴(𝑃) of path 𝑃

1 𝐴 := 1 // For counting the availability
for 𝑆 ∈ CFP[𝐺] do

if 𝑆 ⊆ 𝑃 then
𝐴 := 𝐴 + (−1) |𝑆 |CFP(𝑆)

return 𝐴

Algorithm 2: Exact method for computing the avail-
ability of a path

Input: Path 𝑃 = {𝑒1, . . . , 𝑒𝑘} in graph 𝐺 = (𝑉, 𝐸),
cumulative failure probabilities CFP[𝐺]

Output: Availability 𝐴(𝑃) of path 𝑃

1 𝐴 := 0 // For counting the availability
2 𝐹 := ∅ // The set of CFPs factored in

return FactorInEdgeSet (∅)
Function FactorInEdgeSet(𝑆):

3 𝐴 := 𝐴 + (−1) |𝑆 |CFP(𝑆) // CFP(∅):=1

4 for 𝑖 ∈ {1, . . . , 𝑘} do
if CFP(𝑆 ∪ {𝑒𝑖}) > 0 and {𝑆 ∪ {𝑒𝑖}} ∉ 𝐹 then

𝐹 := 𝐹 ∪ {𝑆 ∪ {𝑒𝑖}}
5 FactorInEdgeSet(𝑆 ∪ {𝑒𝑖})

return 𝐴

where |𝑆 | denotes the cardinality of 𝑆. Note that by the
inclusion-exclusion principle [42], this sum correctly assesses
the availability of path 𝑃. Also, it is not a problem that Alg.
1 possibly neglects some sets 𝑆 ⊆ 𝑃, that are not in CFP[𝐺],
since their cumulative failure probability is zero by definition.

Still, if the cardinality of CFP[𝐺] is excessive, it can
be cumbersome to scan through CFP[𝐺]. To overcome this
difficulty, Alg. 2 takes a different approach. It starts exploring
the CFPs from the 1-element edge sets. If an edge set 𝑆 is
found that intersects with path 𝑃, and it is an element of
CFP[𝐺], it is factored into the sum defined in Eq. 2. Then,
the algorithm checks all the link sets that contain an extra
link compared to 𝑆. If a link set 𝑆′ is found that is not part
of CFP[𝐺], then Alg. 2 refrains from checking any superset
of 𝑆′, since they will not be part of CFP[𝐺] anyway.

We can formally state the complexity achieved by the above
algorithms as follows.

Theorem 1: The exact availability of a path 𝑃 can be com-

Input: network 𝐺 = (𝑉, 𝐸), nodes {𝑠, 𝑡} ⊆ 𝑉 , and CFP[𝐺] consisting of set-probability pairs 𝑆,CFP(𝑆) for 𝑆 ⊆ 𝐸 : CFP(𝑆) > 0, where

Network 𝐺:
CFP(𝑆) denotes the probability that at least 𝑆 will fail during the next disaster

CFP[𝐺 ] :
CFP(𝑎) =4.07·10−2 CFP(𝑏) =3.53·10−2

CFP(𝑐) =1.13·10−2 CFP(𝑑) =2.91·10−3

CFP(𝑒) =1.46·10−2 CFP( 𝑓 ) =2.60·10−2

CFP(𝑎, 𝑏) =5.68·10−3 CFP(𝑏, 𝑒) =6.91·10−6

CFP(𝑎, 𝑒) =4.59·10−4 CFP(𝑐, 𝑒) =7.48·10−4

CFP(𝑑, 𝑒) =3.27·10−4 CFP(𝑑, 𝑓 ) =2.78·10−4

CFP(𝑐, 𝑓 ) =5.25·10−4 CFP(𝑏, 𝑐) =7.27·10−6

CFP(𝑎, 𝑑) =3.35·10−4

CFP(𝑎, 𝑑, 𝑒) =3.27·10−4 CFP(𝑎, 𝑏, 𝑒) =0
CFP(𝑏, 𝑐, 𝑒) =6.91·10−6

Output: a safest 𝑠𝑡-path

Fig. 1. Example real-world problem input. The depicted network 𝐺 is a part of the Interoute network [9] covering the southern part of continental Italy.
Joint failure probabilities due to earthquakes are also taken from [9], calculated at a shaking intensity tolerance of VI. In this example, Property 1 holds.



puted in 𝑂 ( |𝐸 | · |CFP[𝐺] |), or by denoting the number of edge
crossings by 𝑥, in 𝑂 (( |𝑉 | + 𝑥) · |CFP[𝐺] |). Alternatively, if 𝑃

has 𝑘 edges, and by denoting with 𝜌
𝑃

the maximal cardinality
of a link set in CFP[𝐺] having a nonempty intersection with 𝑃,
the availability of 𝑃 can be computed in 𝑂 (𝜌𝑃 · ( |𝑉 |+𝑥) ·

( 𝑘
𝜌
𝑃

)
).

Proof: We claim Alg. 1 solves the problem in 𝑂 ( |𝐸 | ·
|CFP[𝐺] |). Indeed, for each tuple (𝑆,CFP(𝑆)) listed in
CFP[𝐺], Alg. 1 has to make 𝑂 ( |𝐸 |) operations. Namely,
𝑆 ⊆ 𝑃 has to be checked (in 𝑂 ( |𝐸 |)), and then, possibly, the
algorithm makes a constant number of basic arithmetic oper-
ations in 𝑂 (1). We get the 𝑂 (( |𝑉 | + 𝑥)·|CFP[𝐺] |) complexity
by using the claim that |𝐸 | is 𝑂 ( |𝑉 | + 𝑥) [43, Claim 2].

To prove the alternative complexity results, we have to turn
to Alg. 2. Here, starting from the empty set, and adding one
new link at a time, the algorithm explores all the sets 𝑆 that
are both subsets of 𝑃 and have a positive failure probability
CFP(𝑆) > 0. Supposing that given a link set 𝑆, CFP(𝑆) can
be looked up in 𝑂 ( |𝐸 |), we can see that Alg. 2 has a total
complexity of 𝑂 ( |𝐸 | ·2𝑘). This is because the algorithm checks
𝑂 (2𝑘) sets, and handling each set takes 𝑂 ( |𝐸 |) time. Now, we
turn to proving the parametric complexity results.

Trivially, on path 𝑃 having 𝑘 edges, there are
( 𝑘
𝜌
𝑃

)
link

sets having at most 𝜌
𝑃

links. It is easy to see that function
FactorInEdgeSet is called at most 𝜌

𝑃
times for each

set 𝑆 ⊆ 𝑃. Each time the function is called for 𝑆, it makes
𝑂 ( |𝐸 |) operations (the costliest step being looking up CFP(𝑆)
in CFP[𝐺]).

Thus, Alg. 2 computes the exact availability in 𝑂 (𝜌𝑃 · |𝐸 | ·
𝑘𝜌𝑃 ), or, alternatively, in 𝑂 (𝜌𝑃 · ( |𝑉 | + 𝑥) ·

( 𝑘
𝜌
𝑃

)
).

We note that, as a consequence of the above theorem, if 𝜌
𝑃

is 𝑂 (polylog( |𝑉 |)), Alg. 2 computes the exact availability of
a path 𝑃 in 𝑂 (poly( |𝑉 |)). Also, the complexity results show,
that if we, for some practical considerations, would neglect
the size of CFP[𝐺] from the problem input, Alg. 2 is still a
Fixed Parameter Tractable (FPT) algorithm both in 𝑘 and 𝜌

𝑃
.

III. A FAST ALGORITHM FOR FINDING A SAFEST 𝑠𝑡-PATH

In II-A, we saw that computing a safest 𝑠𝑡-path is easy if
link failures are supposed to be independent. Naturally arises
the question of whether there is a broader class of inputs that
can be solved efficiently. In this Section, we will suppose that
Property 1 holds. For this case, we show a fast algorithm that
computes a safest 𝑠𝑡-path in 𝑂 (( |𝑉 | + 𝑥) (Δ + log |𝑉 |)) time,
that, under practical circumstances, means 𝑂 ( |𝑉 | log |𝑉 |).

Our first observation is that, in presence of Property 1, Eq.
(2) becomes much simpler:

Claim 1: Supposing Property 1, the availability of a path
𝑃 = {𝑒1, . . . , 𝑒𝑖} can be calculated as:

𝐴(𝑃) = 1 −
𝑖∑︁
𝑗=1

CFP({𝑒𝑖}) +
𝑖−1∑︁
𝑗=1

CFP({𝑒 𝑗 , 𝑒 𝑗+1}) (3)

Proof: The proof of Claim 1 relies on the correctness of
Eq. (2), supplemented with the following three observations.
Firstly, as a consequence of Property 1, only the CFPs of single
and double link failures have to be factored in. Secondly, since
the diameter of any link set 𝑆 with positive CFP is at most

2, 𝑆 ∩ 𝑃 can be either the empty set, a single link, or two
consecutive links of path 𝑃 (with no other options). Thus, in
consequence, the CFP of all the link sets that are present in
the sums in Eq. (2), but not in Eq. (3) are zero. The proof
follows.

Second, instead of maximizing the availability, we will
minimize the unavailability of the 𝑠𝑡-path. The unavailability
of path 𝑃 is defined simply as 𝑈 (𝑃) := 1 − 𝐴(𝑃). Thus,
supposing Property 1, we have:

𝑈 (𝑃 = {𝑒1, . . . , 𝑒𝑖}) :=

=

𝑖∑︁
𝑗=1

CFP({𝑒𝑖}) −
𝑖−1∑︁
𝑗=1

CFP({𝑒 𝑗 , 𝑒 𝑗+1}).
(4)

Thirdly, instead of minimizing on graph 𝐺 itself, we will
minimize the unavailability in a graph derived from 𝐺 (see
Fig. 2), which is very similar to the so-called line graph of 𝐺
[44]. We start by describing the line graph.

Definition 1 (Line graph): A line graph 𝐿 (𝐺) =

(𝐿 (𝑉), 𝐿(𝐸)) (also called edge-to-vertex dual) of a graph
𝐺 is obtained by associating a vertex with each edge of the
graph and connecting two vertices with an edge if and only if
the corresponding edges of G have a vertex in common. For
an edge 𝑒 ∈ 𝐸 , we denote the node in 𝐿 (𝑉) corresponding to
𝑒 as 𝑒′.

To get the graph we need for easily computing a safest 𝑠𝑡-
path, we need to modify 𝐿 (𝐺), intuitively speaking, around 𝑠

and 𝑡. We will call the resulting graph as ‘edge dual’ graph.
Definition 2 (Edge dual): The 𝑠𝑡-edge dual graph 𝐺′

𝑠𝑡 =

(𝑉 ′
𝑠𝑡 , 𝐸

′
𝑠𝑡 ) of graph 𝐺 = (𝑉, 𝐸) is derived from the line

graph 𝐿 (𝐺) = (𝑉 (𝐺), 𝐸 (𝐺)) as follows. We add nodes 𝑠

and 𝑡 to 𝑉 (𝐺), i.e., 𝑉 ′
𝑠𝑡 := 𝑉 (𝐺) ∪ {𝑠, 𝑡}. Also, for each

edge 𝑒 incident to 𝑠 and 𝑡 in 𝐺, we add edge {𝑠, 𝑙 (𝑒)} and
{𝑡, 𝑙 (𝑒)}, respectively, where 𝑙 (𝑒) ∈ 𝑉 (𝐺) denotes the node
in 𝐿 (𝐺) corresponding to link 𝑒 in 𝐺. More formally, 𝐸 ′

𝑠𝑡 :=
𝐸 (𝐺) ∪ {{𝑠, 𝑙 (𝑒)}|𝑒 = {𝑠, 𝑣} ∈ 𝐸} ∪ {{𝑡, 𝑙 (𝑒)}|𝑒 = {𝑡, 𝑣} ∈ 𝐸}.

When it does not cause confusion, we refer to the 𝑠𝑡-edge
dual simply as the edge dual, and simplify its notation 𝐺′

𝑠𝑡 =

(𝑉 ′
𝑠𝑡 , 𝐸

′
𝑠𝑡 ) to 𝐺′ = (𝑉 ′, 𝐸 ′). Finally, we define a cost function

on the edges of 𝐺′.
Definition 3 (Edge dual cost function): Based on graph

𝐺, and the collection of CFPs CFP[𝐺], the edge dual cost
function 𝑐 : 𝐸 ′ → R0

+ assigns nonnegative costs to the edges
in the edge dual, as described in the following. For links
𝑓 , 𝑔 adjacent in 𝐺, let the cost of link { 𝑓 ′, 𝑔′} in 𝐺′ be
𝑐({ 𝑓 ′, 𝑔′}) := 1

2 CFP( 𝑓 ) + 1
2 CFP(𝑔) − CFP( 𝑓 , 𝑔). Let the

cost of links {𝑠′, 𝑒′} incident to 𝑠′ be 𝑐({𝑠′, 𝑒′}) := 1
2𝑐(𝑒)

Similarly, let the cost of links {𝑡′, 𝑒′} incident to 𝑠′ be
𝑐({𝑡′, 𝑒′}) := 1

2𝑐(𝑒).
It is useful to define the following one-to-one correspon-

dence between 𝑠𝑡-paths 𝑃 graph 𝐺 and their counterparts 𝑃′

in the edge dual 𝐺′.
Definition 4: For an 𝑠𝑡-path 𝑃 = 𝑒1, . . . , 𝑒𝑖 in 𝐺,

we define its counterpart as 𝑃′ := {𝑠′, 𝑒′1}, {𝑒′1, 𝑒
′
2}, . . . ,

{𝑒′
𝑖−1, 𝑒

′
𝑖
}, {𝑒′

𝑖
, 𝑡′}. We define the counterpart of 𝑃′ to be 𝑃.

Claim 2: Given any 𝑠𝑡-path 𝑃 in 𝐺, and its counterpart 𝑃′

in 𝐺′, and supposing Property 1 holds, 𝑐(𝑃′) = 𝑈 (𝑃).



𝑒1 𝑒2 𝑒3 𝑒4

𝑠 𝑡

𝑈 (𝑃) = CFP(𝑒1)/2 + CFP(𝑒1)/2 + CFP(𝑒2)/2 + CFP(𝑒2)/2+
+CFP(𝑒3)/2 + CFP(𝑒3)/2 + CFP(𝑒4)/2 + CFP(𝑒4)/2−

−CFP({𝑒1 , 𝑒2}) − CFP({𝑒2 , 𝑒3}) − CFP({𝑒3 , 𝑒4}) = 𝑐 (𝑃′ )

Fig. 2. Illustration of an 𝑠𝑡-path 𝑃 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} (solid links) and its
counterpart 𝑃′ (Def. 4, dashed links) in the 𝑠𝑡-edge dual graph (Def. 2). If
Property 1 holds, 𝑈 (𝑃) = 𝑐 (𝑃′ ) (Claim 2); cost 𝑐 (described in Def. 3) is
nonnegative, thus a cheapest (most reliable) 𝑠𝑡-path can be calculated via a
simple Dijkstra.

Proof: For an arbitrary 𝑠𝑡-path 𝑃′ = {𝑠′, 𝑒′1}, {𝑒
′
1, 𝑒

′
2}, . . . ,

{𝑒′
𝑖−1, 𝑒

′
𝑖
}, {𝑒′

𝑖
, 𝑡′}, we can derive the following chain of equa-

tions: 𝑐(𝑃′) = 𝑐({𝑠′, 𝑒′1}) + 𝑐({𝑒′1, 𝑒
′
2}) + · · · + 𝑐({𝑒′

𝑖−1, 𝑒
′
𝑖
}) +

𝑐({𝑒′
𝑖
, 𝑡′}) = 1

2 CFP(𝑒1) +
∑𝑖−1

𝑗=1 ( 1
2 CFP(𝑒 𝑗 ) − CFP(𝑒 𝑗 , 𝑒 𝑗+1)) +

1
2 CFP(𝑒𝑖) + 1

2 CFP(𝑒𝑖) =
∑𝑖

𝑗=1 CFP(𝑒𝑖) −
∑𝑖−1

𝑗=1 CFP(𝑒 𝑗 , 𝑒 𝑗+1) =
𝑈 (𝑃).

Corollary 1: An 𝑠𝑡-path 𝑃 is a safest 𝑠𝑡-path (i.e., 𝑈 (𝑃) is
minimal among the 𝑠𝑡-paths) exactly if its counterpart 𝑃′ is a
cheapest 𝑠𝑡-path in 𝐺′.

Theorem 2: Given an input graph 𝐺 with the cumulative
failure probabilities CFP[𝐺], nodes 𝑠 and 𝑡, and supposing
Property 1 holds, a safest 𝑠𝑡-path 𝑃 can be computed in
𝑂 ( |𝐸 |2), or 𝑂 (( |𝑉 | + 𝑥) (Δ + log |𝑉 |)) worst-case time com-
plexity, respectively.

Proof: Due to Cor. 1, it is enough to search for a cheapest
𝑠𝑡-path in the 𝑠𝑡-edge dual graph 𝐺′, since its counterpart will
be a safest 𝑠𝑡-path in 𝐺. Since the cost function 𝑐 is defined to
be nonnegative, we may use a simple Dijkstra [41] algorithm
to find such a path 𝑃′. The best worst case time complexity is
𝑂 (𝑚 + 𝑛 log 𝑛) [45], where 𝑚 and 𝑛 are the number of edges
and nodes in the graph, respectively.

Clearly, 𝐺′ = (𝑉 ′, 𝐸 ′) has |𝐸 | +2 nodes: one corresponding
to each edge in 𝐺, and two for 𝑠 and 𝑡, respectively. A trivial
asymptotic upper bound for |𝐸 ′ | is 𝑂 ( |𝐸 |2), since there could
be an edge in 𝐸 ′ for any link pair in 𝐸 . In practice, for
backbone topologies, the maximum node degree Δ is typically
‘small’. Using parameter Δ, we can tell a 𝑂 (Δ|𝐸 |) upper
bound for |𝐸 ′ |. Also, by [18], |𝐸 | is 𝑂 ( |𝑉 |+𝑥), where 𝑥 denotes
the number of link crossings in the network (and typically,
𝑥 ≪ |𝑉 |). With this, we get that |𝐸 ′ | is 𝑂 (Δ( |𝑉 | + 𝑥)).

Building the 𝑠𝑡-edge dual takes 𝑂 ( |𝐸 ′ |) as follows. 𝑉 ′ can
be built while scanning through the list of links in 𝐺 once
(and then adding 𝑠 and 𝑡, respectively). Meanwhile, for each
𝑣 ∈ 𝑉 , the list 𝑖(𝑣) of links incident to 𝑣 can be calculated. By
adding the counterparts of edge pairs in each 𝑖(𝑣), and then
adding the extra edges around 𝑠 and 𝑡, |𝐸 ′ | can be computed
using 𝑂 ( |𝐸 ′ |) additional operations.

Combining the above claims, we get the 𝑂 ( |𝐸 |2), or
𝑂 (( |𝑉 | + 𝑥) (Δ + log |𝑉 |)) time complexity, respectively.

Corollary 2: Since, in practice, for backbone networks Δ can
be upper estimated by a small constant, and 𝑥 is typically much
smaller than |𝑉 | (because at edge crossing points, typically an
OXC is located, that counts as a node in our model), we can

TABLE I
DESCRIPTION OF THE NETWORKS

Network Number of
nodes |𝑉 |

Number of
edges |𝐸 |

Number
of sim.

Average
CFP

Max.
CFP

Interoute (Italy) 25 34 300 2.35*10−3 0.025
nfsnet (USA) 79 108 3081 3.49*10−4 0.015

janos-us (USA) 26 42 325 4.96*10−4 0.022
cost266 (EU) 37 57 666 4.74*10−4 0.005
optic-eu (EU) 22 45 231 5.33*10−5 0.005

anticipate a typical runtime of 𝑂 ( |𝑉 | log |𝑉 |) for the runtime
of a properly implemented Dijkstra on the 𝑠𝑡-regional-dual.

IV. EVALUATION

In this section, we evaluate the performance of the dis-
cussed algorithms. The simulations will be conducted on real-
world network topologies, coupled with CFP values distilled
from real earthquake disaster datasets (computed in [10],
[39]). First, the simulation setting will be described, then,
the different availability measures are compared. Next, the
performance of the two tackled path-finding methods and the
relative lengths of the paths they provide is evaluated, Finally,
we disclose the runtimes of the different methods.

Simulation settings: The simulations in this study were
conducted using four real-world communication networks. The
nfsnet, janos-us, cost266 and optic-eu are obtained from [18],
and the Interoute network is taken from [9]. These networks
cover the territory of the USA, Europe, and Italy. In this paper,
conform to [9], it is expected that network elements fail at a
ground movement intensity threshold of VI.

The number of nodes, edges, and simulations for each
network are presented in Table I. For each network, we
conducted the simulations for each possible 𝑠𝑡 point pair. Thus,
for each network, the number of simulations equals

( |𝑉 |
2
)
.

In the simulations, two distinct methods were independently
employed to find the safest path between the given 𝑠 and
𝑡 nodes. In both cases, the Dijkstra algorithm was utilized
to identify the safest path, but the process of calculating the
weight of the edges was different. In the Independent method
(IM), weights were calculated by the standard algorithm,
detailed in Sec. II-A. In the Edge-dual method (EDM), a so-
called edge-dual graph and its weights are calculated by our
fast heuristic, as presented in Sec. III. The safest paths derived
from these methods are denoted as 𝑃indep and 𝑃edm.

Three different availability measures were used as evalua-
tion metrics: for each path 𝑃,

(i) 𝐴(𝑃) is the (actual) availability defined in Eq. (2),
(ii) 𝐴indep (𝑃) is the availability estimation used IM, defined

in Eq. (1), and finally,
(iii) 𝐴ed (𝑃) is the availability estimation used in EDM,

defined in Eq. (3).
We note again that if Property 1 holds, 𝐴(𝑃) = 𝐴ed (𝑃) is true
for any path 𝑃.

The simulations were conducted on a virtual machine
equipped with an AMD Ryzen 5 2500U (8 cores @ 2.0GHz)



TABLE II
COMPARISON OF THE AVAILABILITY OF THE 𝑠𝑡-PATHS RETURNED

BY OUR HEURISTIC (𝑃EDM ) AND THE TRADITIONAL METHOD
(𝑃INDEP ), RESP.

Network 𝐴(𝑃indep) higher = 𝐴(𝑃edm) higher

Interoute 0 279 21
nfsnet 0 2040 1041

janos-us 0 305 20
cost266 0 633 33
optic-eu 0 230 1

processor and 16 GB of RAM, running Microsoft Windows
10. The simulation environment and the algorithms are imple-
mented in Python 3.11.5.

Availability metrics comparison: In this subsection, the
different availability metrics are compared by dividing each
routing method’s own availability metric (which is maximized
in the algorithm) by the actual availability of a path.

For IM, the average ratio of 𝐴indep (𝑃) to 𝐴(𝑃) is 0.999.
In 4% of the simulations, this ratio exceeds 1, indicating
that the 𝐴(𝑃) is smaller than the 𝐴indep (𝑃), meaning 𝐴indep
overestimates the availability in these cases. For 12% of the
simulations, the availabilities are equal. In the remaining 84%
of the simulations, the 𝐴indep (𝑃) is smaller, thus we can
conclude that 𝐴indep typically underestimates the availability
of the determined paths.

In case of EDM, as discussed in Sec. III, if Property 1 holds,
𝐴ed (𝑃) and 𝐴(𝑃) are equal. Our simulations show that even
without the fulfillment of Property 1, the differences between
these values are in the order of 10−16, which is negligible.

Path availability comparison: In this subsection, we ana-
lyze the effectiveness of the IM and EDM by comparing the
availabilities of the safest paths determined by the methods.

Table II presents a comparison of the availabilities of the
paths yielded by the IM and EDM, respectively. It is clearly
visible that most of the time, the availability of the paths
provided by the different routing methods is equal. This occurs
because they frequently identify the same path. However,
in each network, there are 𝑠,𝑡 pairs where the availability
of the path determined by EDM (𝐴(𝑃edm)) is higher than
the availability of the path recommended by IM (𝐴(𝑃indep)).
Conversely, in our simulations, the IM never provided a safer
path than the EDM.

Where 𝐴(𝑃edm) is higher, the average availability differ-
ences between respective 𝑠𝑡-path pairs are 1.76·10−3, 8.2·10−5,
6 · 10−6, 2 · 10−6 and 2 · 10−6 in the Iteroute, nfsnet, janos-us
cost266 and optic-eu networks, respectively.

The difference between the availabilities is the most signi-
ficant in the case of the Interoute network, probably due to its
relatively short links, and strong earthquakes. Thus, we put it
in further perspective. Here, by choosing nodes 𝑠 and 𝑡 as can
be seen on Fig. 3, we get 𝐴(𝑃edm)−𝐴(𝑃indep) ≃ 2.98 ·10−3. In
the following, we translate this value to yearly downtime. First
of all, in fact, 𝐴(𝑃) denotes the probability that path 𝑃 will
fail when the next disaster strikes. In Italy, there is an expected
number of 𝑟 = 5.53 earthquakes that are considered (that have

Fig. 3. In the example depicted above, the Edge-Dual path yielded by our
heuristic has 23.7 minutes less expected yearly downtime due to earthquakes
than the Independent path yielded by the traditional approach.

a strength of > 4.5𝑀𝑤) [10]. For the sake of estimation, we
apply a Mean Time To Repair (MTTR) of 24 hours, equaling
1440 minutes [39] (this MTTR might be a slightly optimistic
under-estimation in case of an earthquake). With this, the
expected difference in the downtimes of paths 𝑃edm and 𝑃indep
due to an earthquake can be calculated as follows:(

𝐴 (𝑃edm) − 𝐴

(
𝑃indep

))
· 𝑟 · MTTR ≃ 2.98 · 10−3 · 5.53 · 1440 ≃

≃ 23.7[min/year].

Further, the average difference between the downtimes of
𝑃indep and 𝑃edm in Interoute for 𝑠𝑡-pairs where 𝑃indep ≠ 𝑃edm
calculated similarly as above turned out to be 14[min/year],
that is still significant. Note that while on the special case
depicted in Fig. 3, 𝑃edm turned out to be physically longer,
the average length of the paths yielded by the EDM is slightly
shorter compared to those provided by the IM (cf. Fig. 4, and
the upcoming paragraph on Path length comparison).

In the other networks, the expected yearly downtime im-
provement of 𝑃indep compared to 𝑃edm was more modest, and
did not exceed 14 minutes for any 𝑠𝑡 point pair. This phe-
nomenon may be attributed to the significantly lower average
probability of node destruction by the next earthquake in these
networks, as indicated by the average CFP presented in Table I.
Because the effect of our solutions is the most prominent in
the Interoute network, in the following, we elaborate on the
results exclusively from that.

Path length comparison: In this subsection, the lengths of
the paths identified by IM and EMD are compared. In addition,
as a baseline, the length of the shortest paths (SPs) is also
presented. On Figure 4, the distributions of the length of the
paths are visualized where 𝐴(𝑃indep) ≠ 𝐴(𝑃edm), implying the
paths are not the same. The average lengths of the safest paths
are 1167[km], 1193[km], and 908[km] for EDM, IM, and
SP, respectively. As the EDM and IM visibly choose paths



Fig. 4. Distribution of the path lengths, exclusively in the simulations where
the EDM and the IM returned with different 𝑠𝑡-paths. The median values are
indicated by the red lines, and the average values by the blue dashed lines.

with similar lengths, thus no significant trade-off should be
considered between the two methods. Not surprisingly, our
methods always recommend paths that have a length equal to
or slightly higher than the length of the shortest path.

Runtime comparison: To evaluate the runtime perfor-
mance, we executed all simulations 10 times and measured the
elapsed time. In every simulation, both of the methods were
successfully executed under 1 second. However, the EDM
involves somewhat more computational steps, thus the time
taken to find the safest path using the IM was consistently
shorter than that using the EDM. On average, the IM was faster
by factors of 4.4, 4.1, 2.5, 4.8 and 7.2 in the Interoute, nfsnet,
janos-us, cost266 and optic-eu networks, respectively. Also
supported by the theoretical complexity results, this suggests,
that apart from a small constant factor, the two compared
methods have the same empirical time complexities.

V. CONCLUSION AND FUTURE WORK

In this study, we investigated the effectiveness of a novel
approach for determining the safest paths in real networks
in earthquake-hazard areas. Our method uses a simple graph
transformation coupled with a cost function computed based
on the joint network element failure probabilities that are
considered known as part of the problem input. Our eval-
uations showed that our method, is able to find paths that
are safer than those determined using a traditional method.
Here, the traditional method (implicitly) supposes that network
element failures are independent. Our simulations also showed
that, in most cases, this traditional method underestimates
the actual availability of the path. Furthermore, our results
clearly show that the difference in the length of the paths
yielded by our and the traditional method, respectively, is not
significant. The execution time of our novel approach, even
on a commodity laptop, is less than 1 second for each real-
world simulation setting, making it a viable alternative to the
traditional approach. A more in-depth empirical comparison
of the safest path finding algorithms based on various hazard
data sets can be a straightforward aim of follow-up studies.
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