
On Traffic Prediction in Backbone Networks for
Adaptive Proactive Protection

Attila Dobai-Pataky, Balázs Vass, Lehel Csató

Abstract—In this paper, we revisit adaptive proactive protec-
tion schemes for backbone networks to guarantee high service
availability. We aim to predict available – spare – link capacities
and to use them as protection bandwidth to meet the service
availability requirements of each connection. With a reasonable
discretization of time, the advent of highly scalable capacity-
and disaster risk-aware routing algorithms enables minimizing
the lookahead at 2. In other words, we claim the spare bandwidth
has to be predicted for only 2 time slots ahead. While minimizing
the lookahead plays a key role in achieving better predictions,
foreseeing the network bandwidth usage proves to remain a
notoriously difficult task: traffic patterns are highly dynamic and
are influenced by factors such as user behavior, daily, weekly, or
yearly periodicity, and even unforeseeable external events. After
discussing the protection scheme design, this study compares
the performance of two time series forecasting methods for the
prediction of network traffic in the short term: Autoregressive
Integrated Moving Average (ARIMA) models and Temporal Con-
volutional Networks (TCN). These models are assessed on real
traffic data obtained from the Energy Sciences Network (ESnet),
a high-speed, international backbone network.

I. INTRODUCTION

IN TODAY’S cloud era, communication networks are topmost
critical infrastructures [1]. The new mission-critical appli-

cations, such as telesurgery or stock market prediction, clearly
demand high Quality of Service (QOS) of the underlying
network infrastructure [2]. Today’s networks are operated with
approximately four-nines availability, that is, the services are
available at least 99.99% of the time, which translates to a
maximum of around 53 minutes downtime a year. Four-nines
is often considered a reasonable cost-benefit ratio, however, the
lack of highly reliable Internet has become a limiting factor
for development. Current technology trends point toward the
advent of the era of the Internet of Everything (IoE) with
an enormous amount of data [3], where e.g., augmented and
virtual reality applications not only require high dependability,
but are also extremely latency-sensitive. Thus, QOS enhance-
ment to reach and surpass the requirements of ultra-reliable
and low-latency communication (URLLC) is a must, where six-
nines is a typical required availability [4].

There are two fundamentally distinct strategies to enhance
connectivity in backbone networks. Proactive methods aim

Attila Dobai-Pataky, Balázs Vass, and Lehel Csató are
with the Babes, -Bolyai University of Cluj Napoca, Ro-
mania. Balázs Vass is also with the Budapest Univer-
sity of Technology and Economics (BME). Email: at-
tila.dobai@stud.ubbcluj.ro, balazs.vass@ubbcluj.ro, lehel.
csato@ubbcluj.ro. Supported by the project “Romanian Hub

for Artificial Intelligence - HRIA”, Smart Growth, Digitization and Financial
Instruments Program, 2021-2027, MySMIS no. 334906.

proactive
protection adaptive proactive protection reactive

protection

latency
matters both matter bandwidth

matters

Fig. 1. Proactive protection schemes waste bandwidths, while reactive
protection schemes are too slow for latency-sensitive applications. An ideal
protection scheme re-introduces adaptiveness to a proactive approach by
letting it prepare (react) to predicted bandwidth usages instead of peak rates.

to ready the system for potential failures so that when a
failure happens, no internal reconfiguration of the network
is necessary. This is accomplished by distributing the same
information across multiple routes so that in the event of
a failure, only the end node needs to respond. Conversely,
reactive methods involve altering the network configuration
once a failure has been detected. Note that while reactive
strategies can conserve a considerable amount of bandwidth
compared to proactive ones, they require immediate network
reconfiguration after a failure occurs, which can be relatively
slow in practice. This makes reactive approaches unsuitable
for protecting latency-sensitive data flows. This leaves us with
proactive protection schemes. Among these, for achieving the
prescribed availabilities, the current best practice is using
solutions offering dedicated protection, due to their simplicity,
robustness, and flexibility.

Being stuck with a single static dedicated protection scheme,
however, would waste a significant amount of bandwidth.
Also, it could cause unnecessary bandwidth restrictions on the
working paths (WPs). This is because the capacity of the WP is
often over-provisioned for peak rates; however, a significant
share of the bandwidths is unused most of the time [5]. To
put this issue in a slightly different way, the drawback of
using a single static dedicated protection scheme is the lack of
adaptability. We argue that an ideal protection scheme would
re-introduce adaptiveness to a proactive approach by letting
it prepare (react) to predicted bandwidth usages instead of
peak rates (see Fig. 1). Here the idea is that the proactive
scheme could utilize the predicted spare bandwidth. The
drawback of the approach is that if the bandwidth used by the
actual traffic demands exceeds the predictions, some (minor)
transient bandwidth limitations should be imposed.1

1Transient bandwidth limitations may appear when applying reactive
schemes too. Reactive schemes inevitably lose some packets when failure
hits. In the case of ESnet, e.g., the performance impact of losing only .0046%
of the packets can cause the throughput to become almost 17 times smaller
compared to the loss-free state [6].

t:=t+1−−−−−→ t:=t+1−−−−−→Network at time (t)

Broadcasting protection plan for (t+1)Collecting traffic information (t)

Traffic prediction
with data until (t−1)

Spare capacity (t+1)

Dedicated protection
for (t+1)

Fig. 2. Scheme of an adaptive proactive protection approach. Time slots could be as short as a few seconds [7].

This issue should be seen as a trade-off between adapt-
ability to changing traffic patterns and occasional bandwidth
limitations. No adaptivity, with a basic ability of the proactive
protection to enhance availability, and no bandwidth limita-
tions should be considered as the baseline. More opportunistic
adaptive schemes utilizing traffic predictions would achieve
a higher bandwidth utilization of protection via trading a(n
ideally) small timeshare with minor bandwidth limitations.
Note that here, the experienced performance of the traffic
prediction used plays a key role.

Summarized, the envisioned adaptive proactive protection
schemes have two main components:

1) Prediction: forecasting the spare bandwidth in an upcom-
ing time period, and

2) Routing: computing a best-fit dedicated protection for the
period based on the estimated spare bandwidth.

The current study aims to understand the key possibilities and
limitations of such approaches by investigating their two key
components. To do so, we reiterate on recent article [7], which,
to the best of our knowledge, represents the current state-of-
the-art among adaptive proactive protection schemes.

Our main contributions are as follows:

• Analyzing the components of an ideal adaptive proactive
protection framework, we propose refinements to the state-
of-art model [7]. Namely, we argue that with practical
discretization of time, a lookahead of as low as 2 can be
applied for prediction (instead of the baseline value of 8).
We also hint at alternative scalable routing algorithms to
be used to compute the dedicated protection routes.

• We evaluate the performance of multiple traffic prediction
approaches on real-world data (collected from the ESNet),
based on prediction accuracy and resources used. With
a lookahead of 2, our best-performing predictions (both
among TCNs and ARIMAs) achieve lower average RMSEs
than the champion of [7], when traffic increase factored in.

• Concerning a slightly different metric, TCNs are proven to
be effective in reducing the average relative RMSE of the
links.

The rest of the paper is structured as follows: §II presents
our model, and background in both prediction and routing.
§III presents our test data and methodology for predicting
bandwidth demand, §IV discusses our evaluation results, and
finally, §V concludes our work and envisions future research
directions.

II. MODEL, ASSUMPTIONS, AND BACKGROUND

The network is modeled as a directed graph D=(V,A),
with each link a∈A having capacity ca > 0, and a related
series Xa

t (t∈N) describing the bandwidth usage on a at time
t. If known in advance, spare bandwidths Y a

t := ca−Xa
t could

be used to host backup paths for protected data flows, com-
puted by highly scalable resilient routing algorithms. Unfortu-
nately, future demands are not known. Thus, we create a pre-
dicted series of the (slightly underestimated) spare bandwidth
Y

a

t := ca−αX̂a
t , where X̂a

t is the predicted bandwidth used,
and α≥ 1 is a parameter close to 1. Here, two issues can arise:
1) Too much underestimation leads to less capacity to be used
as a backup resource, and 2) an eventual overestimation may
yield bandwidth limitations. We argue X̂a

t can be predicted
when Xa

t−2 becomes known, as time interval t−1 (lasting 30
[sec] in our use case) is sufficient to perform all necessary
preparations (prediction, routing, updating). This is in contrast
to [7], which supposes a lookahead of 8 is necessary, making
it a more challenging task.

Hereafter, we will call the setting when X̂a
t is predicted

based on Xa
t−2,X

a
t−3,... as short prediction.

A. Dedicated Protection Approaches
Nowadays, the so-called 1+1 is the most widespread ded-

icated protection approach. With 1+1, the data can be sent
parallel on edge- or node-disjoint working and backup paths
(WP and BP), ensuring instantaneous recovery against single
link or node failures in a simple manner. Such a path pair
can be quickly found, via, e.g., Suurballe’s algorithm [8] that
computes a WP-BP path pair of minimum total length in
O(|E|+ |V |log|V |). Being such a computationally efficient
subroutine, Suurballe’s algorithm is very useful for preparing
the network for single element failures with short predictions.

To exceed a certain availability threshold, however, pro-
tection against the simultaneous failure of multiple elements
becomes inevitable. Such failures can be caused by natural
or man-made disasters (such as earthquakes, electromagnetic
pulses, etc.). Such failures are modeled as Shared Risk Groups
(SRG), which are sets of network elements that are expected
to fail simultaneously. For routing purposes, the failure of a
node v can be modeled as the failure of all the links incident
to v. Thus, it is enough to take into count Shared Risk Link
Groups (SRLGs), which are simply just SRGs containing only
links. To tackle the issue of SRLG failures, the framework of
[7] used the GDP-R routing of [9]. Unfortunately, since the
problem formulation of [9] is NP-hard, the routing of GDP-R
is calculated via the help of an ILP formulation - that can take

an infeasibly long time to be optimized, especially if we want
to make it work together with short predictions.

Studying SRLG-disjoint path computing problems has a long
history [10]. Without going into much detail, [11]–[13] prove
the NP-hardness of the problem in various settings. [14]–
[16] rely at least partly on ILP/MILP formulations to solve
or approximate the weighted version of the SRLG-disjoint
paths problem. Under a probabilistic SRLG model, [17] aims
finding diverse routes with minimum joint failure probability
via an integer non-linear program (INLP). Heuristics were also
investigated [18], [19], unfortunately, with issues like possibly
non-polynomial runtime or occasional forwarding loops in the
presence of disasters.

On the positive side, resulting from the chain of studies
[20]–[28], the current state-of-art algorithm published in [29],
[30] called DateLine is highly scalable (with a near-linear
computational complexity in function of |V | in practice), and
has a low worst-case time complexity for solving the SRLG-
disjoint paths problem supposing the topology is planar and the
paths should be node-disjoint. While the DateLine algorithm
on its own does not take into account the spare bandwidths
of links, being computationally efficient, it can be used for
preparing the network for SRLG failures with short predictions.
In this sense, it can be seen as the best known counterpart of
Suurballe’s algorithm for SRLG failures.

In conclusion, we believe the current state of SRLG-disjoint
routing algorithms allows replacing the ILP-based GDP-R rout-
ing algorithm used in [7] to more scalable efficient algorithms,
enabling to choose a lookahead time of as low as 2 for
prediction for the network traffic. Note that a lookahead of
1 would not be enough, since then the network should hop to
a newly computed protection state in an infinitesimally small
time interval. As we will see, a lookahead of 2 is a crucial
enabler of more accurate predictions yielding a better overall
performance of the protection framework.

B. Traffic Prediction Techniques

There are multiple classical and novel models available for
the purpose of time series forecasting. A classical, linear model
is the Autoregressive Integrated Moving Average (ARIMA)
[31]. The ARIMA is interpretable due to its linear nature
and simple structure; it performs well on periodic, linearly
dependent data. Given the noisiness and nonlinear behavior of
real-world bandwidth usage data, nonlinear models, especially
neural networks, are also applied in this domain. Examples
include feed-forward neural networks (more specifically, Con-
volutional Neural Networks – CNNs), such as the

• Temporal Convolutional Networks (TCNs) [32], devised
for general-purpose time series forecasting, employing
residual connections known from ResNet [33], and

• WaveNet [34], an architecture similar to TCNs, originally
used for voice generation, but applicable to other time
series prediction problems [35]. Wavenet uses local and
global conditioning, based on metadata provided as input
(for example, linguistic features or the speaker’s identity).

In the case of traffic volume forecasting, such metadata
could be the time-of-day or day-of-week.

Recurrent Neural Networks (RNNs) are another family of
neural networks suited for processing sequential data [36].
Although RNNs are structurally designed for processing se-
quential data, they are generally harder to train. (The sequen-
tial computation of data inherent in RNNs limits parallelization
during training, as opposed to CNNs, which may process a long
input sequence as a whole.) Furthermore, TCNs were shown
to outperform RNNs (including specialized architectures like
LSTMs and GRUs) on multiple sequential tasks [32].

A third, novel family of neural networks, namely
Transformer-based architectures have outstanding performance
in the domains of natural language processing and speech
recognition, yet they are harder to apply to time series forecast-
ing problems, due to their permutation-invariant self-attention
mechanism. Study [37] shows that, in many cases, Trans-
formers specialized for time series forecasting have poorer
performance than a simple linear model, on various datasets.
The original Transformer architecture also has O(N2) time
and memory complexity in terms of input sequence length N ,
which may be prohibitively expensive in the case of high-
volume time series data (whereas the TCN scales linearly).
Although some specialized Transformer models reduce this
theoretical complexity to O(N logN), or even O(N), [37]
also shows that it is unclear whether this improves the actual
inference time and memory cost. A more recent architecture,
iTransformer [38], achieves superior performance on multi-
variate time series prediction tasks compared to the previous
models assessed in [37].

Despite the recent emphasis on deep learning models, new
linear models are still being developed; Random Convolutional
Kernel Transform (ROCKET) [39], for example, is essentially
a convolutional neural network with no hidden layers and a
very high number of filters. ROCKET was demonstrated to be
on par with deep learning architectures like ResNet in terms
of accuracy on certain time series benchmarks.

For our traffic prediction purposes, we assessed a classical
linear model, the ARIMA, thanks to its interpretability, and a
nonlinear model, the TCN, due to the chaotic nature and high
volume of the examined bandwidth usage data.

III. METHODOLOGY FOR TRAFFIC PREDICTION

A. Test Data

We analyzed bandwidth usage data obtained from the
Energy Sciences Network (ESnet), covering the 3-month pe-
riod of 2024-08-01 to 2024-11-30, marked by the vertical lines
in Fig. 3. The resolution of the time steps is 30 secs; this
gives approximately 265000 data points per direction per link.
The tests were executed on the 141 data links that reported
traffic in at least 10% of this time interval. We have analyzed
a single data flow direction for each link. (In the context of
traffic volume prediction, we may treat each direction as a
separate link since we have per-direction bandwidth usage data
on them.) The first 78 days of the analyzed interval were used

2015 2016 2018 2019 2020 2022 2023 2025
1010

1010.5

1011

1011.4
Tr

af
fic

[
M
b
p
s
]

Fig. 3. ESnet average monthly total bandwidth volume over time. The
interval between the vertical lines stands for ’24-08-01 – ’24-11-30.

1 40 80 120
108

109

1010

1011

Index (tth period of 30 secs)

Tr
af

fic
[
M
b
p
s
]

Fig. 4. Traffic on link LASV–LOSA, 2024-08-01 00:00:00-01:00:00

as training data (relevant in the case of TCNs), the last 14 days
were used to evaluate the prediction capabilities of the models.
This results in a 85%-15% train-test split ratio.

Our goals are to predict the bandwidth usage:
• 4 minutes (8 units) into the future – in order to compare

the results with benchmark [7]
• 1 minute (2 units) into the future – since scalable resilient

routing algorithms make it possible to determine the
routing and distribute the results in such a short timeframe.

For the sake of simplicity and computational efficiency, we
make no assumptions about the correlation between traffic
volumes on links, meaning all links are treated as separate
univariate time series prediction problems. Although each
model evaluation happens with the same set of hyperparame-
ters across links, model fitting / training happens separately for
each link, since traffic volume, potential periodicity, and other
patterns vary widely between links. Fig. 4 shows a one-hour
traffic example on a link, with spikes in traffic volume (where
the scale is logarithmic), most notably the sudden drop and
jump-back of more than an order of magnitude at time step
35. Such spikes make the prediction challenging.

B. Autoregressive Integrated Moving Average models (ARIMA)

For a time series Xt (t∈N), ARIMA models predict the
differenced series according to equation

X ′
t = c+

p∑
i=1

ϕiX
′
t−i+

q∑
i=1

θiϵt−i+ϵt,

where ϵ is white noise and the hyperparameters p,d,q are
the order of the autoregressive component, the order of dif-
ferencing, and the order of the moving average component,
respectively. Optionally, c denotes a linear trend [31]. To
determine the optimal parameters ϕϕϕ and θθθ for a given set
of hyperparameters in timestep t, we fit the model using the
maximum likelihood estimation on data taken from a sliding
window Xt−l,...,Xt, with length l. Given the forecast distance
f , prediction X̂t+f is the expected value of the f th element
in the series generated. Hence, each ARIMA experiment is
determined by the choice of hyperparameters (p,d,q), l, and f .

Note that new parameters (ϕϕϕ and θθθ) are estimated for each
timestep. This is beneficial because the analyzed series are not
truly stationary. The optimization is performed using the BFGS

method. For the first prediction on a given link, the starting
values for the optimization are chosen using the conditional
sum-of-squares (CSS) method. Two approaches were used
to choose the optimization’s starting values for subsequent
timesteps: 1) utilizing the CSS method again, and 2) using
the values that the previous optimization converged to. The
first approach yields a slightly better performance, but has a
higher execution time.

C. Temporal Convolutional Networks (TCN)

TCNs are convolutional neural networks specifically de-
signed for sequential data processing. Their core component
is the causal convolution, where the output corresponding to
timestep t+f depends strictly on inputs from t and earlier,
preventing future information leakage. TCNs employ residual
connections [33] to mitigate the problem of vanishing gradi-
ents. Causal convolutions are dilated, in order to expand the
receptieve field: the convolutional kernels are applied to input
elements spaced d positions apart, where d is the dilation rate.
By choosing the dilation rates to be increasing powers of two
in consecutive layers, an exponential growth in the size of the
receptive field of the model is achieved with a linear increase
in the number of parameters [32], [34]. Dropout layers are
employed in order to prevent overfitting [32]. Another method
applicable to reduce overfitting is the L2 regularization of
weights, as used in the case of CNNs for time series forecasting
in [35]. In order to detect overfitting, 10% of the training
dataset was randomly selected to constitute the validation set.

In our case, TCN instances operate on a much longer range
than ARIMA instances: being trained and validated on the
first 85% of the data, they use the same parameters during
the evaluation on the entire test set. As a consequence, an
additional standardization step is required, in order to be able
to treat the entire data as a sample from a single distribution.
Note that while this standardization proved critical for the
performance of TCNs, it’s application to ARIMAs showed no
improvements in performance.

We observed that, on most links, the marginal distribution
of the data on the entire time interval is approximately
log-normal, the most significant outliers being the 0-values,
comprising 0.77% of the data per link on average. We re-
placed these with a moving average, in order to be able to

(a) Log-transformed traffic volumes on link CERN513–WASH. (b) Log-transformed traffic volumes on link NEWY32AOA–WASH.

Fig. 5. Log-transformed traffic volumes on two different links; mean µt, and standard deviation σ2
t calculated with window size w=20160, i.e., one week.

normalize the data. This leads to more inaccurate predictions
corresponding to 0-values, but better performance in general.
Occasional outages, although rare, were also represented with
0-values in the dataset.

Furthermore, any sufficiently long interval taken from a
link’s data also has an approximately log-normal marginal
distribution. This, however, does not mean that the data is
stationary: the means and variances of the log-transformed
data vary significantly in function of the starting point and
size of the interval (most notably, the means show a rising
trend; for an example, see Fig. 5a.)

These distribution properties are crucial for a meaningful
standardization of the data. For each timestep t, Xt (and,
just as importantly, X̂t+f) is assumed to come from the
distribution N (µt,σ

2
t), where µt and σ2

t are calculated from
the running window Xt−w,...,Xt. The running window length
w is considered a hyperparameter of our model. An additional
clipping step is performed on the model inputs to lessen the
disproportionate influence of outliers on the training process.
Here, in contrast to non-sequential supervised learning tasks,
outliers could not be simply omitted, as the temporal structure
of the data would be compromised in the process.

It is the intuitive option to treat the prediction problem as
a regression task, and choose the output of the model to be

100 101 102 103 104
0.4

0.6

0.8

1 naive f=8

naive f=2

TCNf=8

TCNf=2

ARIMA(3,0,1)f=8

ARIMA(3,0,1)f=2

Training + Prediction time [sec]

A
vg

.R
el

at
iv

e
R

M
SE

Fig. 6. Average of per-link relative model losses vs absolute runtimes

a single X̂t+f value. To optimize the model parameters, a
possible loss function to be minimised is the root mean squared
error (RMSE). But, as evidenced in [40], and also applied
in [34], the problem can also be treated as a classification
task, even though the data values are continuous. In this
case, the continuous range of possible values is split evenly
into a number of classes. The output of the model is then a
categorical probability distribution over these classes, obtained
via the softmax function. The loss function in this case is the
cross-entropy between the predicted and observed distributions
for Xt+f [36]. The advantage of such a model is that it
can better approximate values from multimodal distributions,
whereas regression works best on unimodals. As presented
by §IV, regression-based and classification models had no
significant differences in performance in our particular case.

IV. EVALUATION

For conducting our evaluations, we implemented the pre-
diction module in the Julia programming language and made
it available on GitLab.2 The ARIMA tests were executed
parallelly on a machine with an Intel Core(TM) i7-3770K CPU
@ 3.50GHZ and 32 GB RAM. The TCN tests were executed
on an Nvidia GeForce RTX 3070 GPU with 8 GB RAM.

2Implementation available: https://gitlab.com/dobaipatakyattila/qoserm-tsa

100 101 102 103 104

4,000

5,000

6,000

7,000 naive f=8

naive f=2

TCNf=8

TCNf=2

ARIMA(3,0,1)f=8

ARIMA(3,0,1)f=2

Training + Prediction time [sec]

A
vg

.R
M

SE
[
M
b
p
s
]

Fig. 7. Average of absolute model losses vs runtimes

https://gitlab.com/dobaipatakyattila/qoserm-tsa

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
100

101

102

103

104

Data links ordered by performance of the baseline (naivef=2)

R
M

SE
[
M
b
p
s
]

naivef=2

ARIMAf=2

TCNf=2

Fig. 8. Model performance evaluation on a per-link basis, with a forecast distance of 2 units.

The baseline for our forecasting accuracy are the naı̈ve lag-
based models X̂t+f =Xt, for f =2 and f =8, having the
average RMSEs of 5623.62 and 6851.56 MBPS per link, respec-
tively. Training+prediction times and the averages of per-link
relative losses compared to the lag-based model with f =8 are
depicted in Fig. 6. Taking the average loss reduction on the
links, the best evaluated ARIMA model for f =8 decreased
loss by 10%, while the TCN achieved a 39% decrease. As
expected, reducing f to 2 proved highly beneficial: the simple
lag-based model’s loss decreased by 13%, while the ARIMA
and the TCN achieved 38% and 68% lower losses on average
than the f =8 lag-based model, respectively.

The best-performing ARIMA model inspected with the pa-
rameters (3,0,1) and sliding window size 1200 predicted with
an average RMSE of 4888.51 MBPS in a distance of 2 units,
and 6214.62 MBPS in a distance of 8. On the same network,
for the year 2019, [7] reported an RMSE of 4451 MBPS in
a distance of 8, with their best-among-arimas ARIMA(3,1,2).
These values may be compared when we factor in the 97%
traffic volume increase experienced by the network in the
last 5 years (based on the average monthly traffic of 2019
and the average monthly traffic for 2024–11 reported by
ESnet). The growth-adjusted RMSE value for [7] would be
4451 ·1.97=8768.47, although this simplistic calculation can
not take into account the possible change of patterns, variance,
or network expansion (the addition of new links).

Turning to TCNs, the best-performing TCN model inspected
consisted of 4 convolutional layers, each with 40 channels

and size 3 kernels. Increasing the number of convolutional
layers beyond a certain threshold did not improve perfor-
mance. After every second convolutional layer, 20% dropout
layers were used. Residual connections bridged every two
layers. A dilation factor of 2 was used. The best lookback
window (the size of the input of the TCN) was 3000 timesteps
long (corresponding to 25 hours), in order to capture daily
periodicities, a compromise between model performance and
memory size and training time. A small sized fully connected
layer (50 parameters, swish activation function) between the
layer collecting the convolutional outputs and the final output
layer significantly improved model performance. With respect
to the last layer, we evaluated single output (regression), and
20, 64 output (classification) models. Classification models
had close to identical performance to regression models, with
a minor degradation attributable to quantization. Notably,
classification models exhibited a higher tendency to overfit,
demonstrating their capacity to approximate arbitrary data
distributions. The running window length w, used in data
standardization, was fixed at 20160 timesteps (equivalent to 1
week). Input values outside the µt±3σ2

t limit were considered
outliers and clipped. The hyperparameter w could be further
tuned on a per-link basis: preliminary experiments showed that
on certain links chosing w to be 40000 brought up to 90%
performance improvements. We chose not to factor in these
improvements in the final evaluation, in order to adhere to our
primary objective of using the same hyperparameters across
all links for the assessment of a given model.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.5

1

1.5

2

Data links ordered by performance of the baseline (naivef=2)

R
el

at
iv

e
R

M
SE

(L
ow

er
is

be
tte

r)

naivef=2

ARIMAf=2

TCNf=2

Fig. 9. Model performance compared to the baseline on a per-link basis, with a forecast distance of 2 units.

For forecast distance f =2, this model produced an average
RMSE of 5220.72 MBPS. Even though this single average value
is worse than that of the ARIMA model, the TCN outperformed
the ARIMA in the majority of cases (93 out of the 141).
The worse average RMSE is due to severe failure of the
TCN in the few extreme cases where the behavior of the
test data changes suddenly and differs enormously from the
train data. (As an example, see Fig. 5b. Note the sudden
increase in variance after t=2.5×105). In such cases, the
ARIMA performs better, due to it’s shorter lookback window
and independence of values past that window. Inspecting the
per-link loss decrease however, TCNs have a 22% lower loss
than ARIMAs on average. See Fig. 9 for a per-link evaluation
of model performances relative to the baseline and Fig. 8 for
the same evaluation in absolute terms. For forecast distance
f =8, the TCN had an average RMSE of 6907.83 MBPS. The
best-performing nonlinear model in [7] had a RMSE of cca.
2800 MBPS (the simple growth-adjusted value would be cca.
5516 MBPS). Our TCN models, for f =8, fall short of this
value, primarily due to the previously mentioned cases where
extreme shifts occured in test data behavior. Such shifts greatly
influence the RMSE value due to the relatively short test dataset
(compared to [7]).

V. CONCLUSIONS AND FUTURE WORK

Based on our simulation results, we conclude that mini-
mizing the prediction distance should be a design priority for
the family of adaptive protection schemes described in the
paper. The performance of our TCN-based model could be
further improved by adaptively selecting the optimal window
length for input standardization, as using a fixed global value
w appears to be a key cause of bad predictions in extreme
cases. A potential solution is locally conditioning the model on
multiple transformed versions of the time series, standardized
with different w values. The model’s generalization capabil-
ities could also be improved by training on a longer time
interval. With this said, as part of our future work, we will also
try to achieve better prediction performance by leveraging the
possible correlations between data links, arising from the graph
structure of the data. Concerning the big picture, our plans
also include implementing a full-blown adaptive proactive
protection scheme.

REFERENCES

[1] A Review of Critical Infrastructure Domains in Europe. SPEAR, www.
spear2020.eu/News/Details?id=120. Accessed: 2025.

[2] Z. Wang, Internet QoS: Architectures and Mechanisms for Quality of
Service. San Francisco, CA, USA: Morgan Kaufmann Publ. Inc., 2001.

[3] F. Tariq et al., “A speculative study on 6g,” IEEE Wireless Communi-
cations, vol. 27, no. 4, pp. 118–125, 2020.

[4] D. Feng et al., “Ultra-reliable and low-latency communications: appli-
cations, opportunities and challenges,” Science China Inf. Sci., 2021.

[5] Y. Huang and R. Guerin, “Does over-provisioning become more or
less efficient as networks grow larger?” in 13TH IEEE International
Conference on Network Protocols (ICNP’05), 2005, pp. 11 pp.–235.

[6] On packet loss in ESNet. fasterdata.es.net/network-tuning/
tcp-issues-explained/packet-loss/. Accessed: 2025.

[7] F. Mogyorósi et al., “Adaptive protection of scientific backbone networks
using machine learning,” IEEE TNSM, vol. 18, no. 1, 2021.

[8] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[9] P. Babarczi et al., “Instantaneous recovery of unicast connections
in transport networks: Routing versus coding,” Computer Networks,
vol. 82, pp. 68–80, 2015.

[10] P. Datta et al., “Sub-graph routing : A novel fault-tolerant architecture
for shared-risk link group failures in wdm optical networks,” in Design
of Reliable Communication Networks (DRCN), 2003, pp. 296–303.

[11] J.-Q. Hu, “Diverse routing in optical mesh networks,” IEEE Trans.
Communications, vol. 51, pp. 489–494, 2003.

[12] J.-C. Bermond et al., “SRLG-diverse routing with the star property,” in
Design of Reliable Communication Networks (DRCN). IEEE, 2013.

[13] X. Luo and B. Wang, “Diverse routing in WDM optical networks with
shared risk link group (SLRG) failures,” in IEEE DRCN, 2005.

[14] D. Xu et al., “SRLG-diverse routing of multiple circuits in a heteroge-
neous optical transport network,” in IEEE DRCN, 2011.

[15] T. Gomes et al., “Two heuristics for calculating a shared risk link group
disjoint set of paths of min-sum cost,” Journal of Network and Systems
Management, vol. 23, no. 4, pp. 1067–1103, 2015.

[16] A. de Sousa et al., “Determination of the minimum cost pair of D-
geodiverse paths,” in IEEE DRCN, Munich, Germany, March 8-10 2017.

[17] H.-W. Lee et al., “Diverse routing in networks with probabilistic
failures,” IEEE/ACM Trans. Netw., vol. 18, no. 6, pp. 1895–1907, 2010.

[18] K. Xie et al., “Divide and conquer for fast SRLG disjoint routing,” in
IEEE/IFIP DSN, 2018, pp. 622–633.

[19] B. Yang et al., “Keep forwarding: Towards k-link failure resilient
routing,” in IEEE INFOCOM. IEEE, 2014, pp. 1617–1625.

[20] D. Bienstock, “Some generalized max-flow min-cut problems in the
plane,” Mathematics of Operations Research, vol. 16, no. 2, 1991.

[21] C. Mcdiarmid et al., “Induced circuits in planar graphs,” Journal of
Combinatorial Theory, Series B, vol. 60, no. 2, pp. 169 – 176, 1994.

[22] C. McDiarmid et al., “Non-interfering network flows,” in Algorithm
Theory—SWAT’92: Third Scandinavian Workshop on Algorithm Theory
Helsinki, Finland, July 8–10, 1992 Proceedings 3. Springer, 1992.

[23] S. Neumayer et al., “Assessing the vulnerability of the fiber infrastruc-
ture to disasters,” IEEE/ACM Trans. Netw., pp. 1610–1623, 2011.

[24] ——, “Geographic max-flow and min-cut under a circular disk failure
model,” in IEEE INFOCOM, 2012, pp. 2736–2740.

[25] Y. Kobayashi and K. Otsuki, “Max-flow min-cut theorem and faster
algorithms in a circular disk failure model,” in IEEE INFOCOM, 2014.

[26] K. Otsuki et al., “Improved max-flow min-cut algorithms in a circular
disk failure model with application to a road network,” European Journal
of Operational Research, vol. 248, no. 2, pp. 396–403, 2016.

[27] B. Vass et al., “Polynomial-time algorithm for the regional SRLG-
disjoint paths problem,” in Proc. IEEE INFOCOM, May 2022.

[28] ——, “A whirling dervish: Polynomial-time algorithm for the regional
srlg-disjoint paths problem,” IEEE/ACM Trans. on Netw., 2023.

[29] E. Bérczi-Kovács et al., “Efficient algorithm for Region-Disjoint surviv-
able routing in backbone networks,” in IEEE INFOCOM, 2024.

[30] ——, “DateLine: Efficient Algorithm for Computing Region Disjoint
Paths in Backbone Networks,” IEEE JSAC, pp. 1–14, Jan. 2025.

[31] R. Hyndman, Forecasting: principles and practice. OTexts, 2018.
[32] S. Bai et al., “An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling,” arXiv, 2018.
[33] K. He et al., “Deep residual learning for image recognition,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[34] A. van den Oord et al., “Wavenet: A generative model for raw audio,”
in Arxiv, 2016.

[35] A. Borovykh et al., “Conditional time series forecasting with convolu-
tional neural networks,” arXiv, 2018.

[36] I. Goodfellow et al., Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[37] A. Zeng et al., “Are transformers effective for time series forecasting?”
in AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

[38] Y. Liu et al., “itransformer: Inverted transformers are effective for time
series forecasting,” in The Twelfth International Conference on Learning
Representations, 2024.

[39] A. Dempster et al., “Rocket: exceptionally fast and accurate time series
classification using random convolutional kernels,” Data Mining and
Knowledge Discovery, vol. 34, no. 5, p. 1454–1495, Jul. 2020.

[40] A. Van Den Oord et al., “Pixel recurrent neural networks,” in Proceed-
ings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ser. ICML’16. JMLR.org, 2016.

 www.spear2020.eu/News/Details?id=120
 www.spear2020.eu/News/Details?id=120
 fasterdata.es.net/network-tuning/tcp-issues-explained/packet-loss/
 fasterdata.es.net/network-tuning/tcp-issues-explained/packet-loss/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Introduction
	Model, Assumptions, and Background
	Dedicated Protection Approaches
	Traffic Prediction Techniques

	Methodology for Traffic Prediction
	Test Data
	Autoregressive Integrated Moving Average models (arima)
	Temporal Convolutional Networks (tcn)

	Evaluation
	Conclusions and Future Work
	References

