
1

Programmable Real-time Scheduling of
Disaggregated Network Functions:

A Theoretical Model
Tamás Lévai, Balázs Vass, Gábor Rétvári

Abstract—Novel telecommunication systems build on a cloudi-
fied architecture running softwarized network services as disag-
gregated virtual network functions (VNFs) on commercial off-the-
shelf (COTS) hardware to improve costs and flexibility. Given
the stringent processing deadlines of modern applications, these
systems are critically dependent on a closed-loop control algorithm
to orchestrate the execution of the disaggregated components. At
the moment, however, the formal model for implementing such
real-time control loops is mostly missing.

In this paper, we introduce a new real-time VNF execution en-
vironment that runs entirely on COTS hardware. First, we define
a comprehensive formal model that enables us to reason about
packet processing delays across disaggregated VNF processing
chains analytically. Then we integrate the model into a gradient-
optimization control algorithm to provide optimal scheduling for
real-time infocommunication services in a programmable way. We
present experimental evidence that our model gives a proper delay
estimation on a real software switch. We evaluate our control
algorithm on multiple representative use cases using a software
switch simulator. Our results show the algorithm drives the system
to a real-time capable state in just a few control periods even in
case of complex services.

Index Terms—dataflow graph, software switch, SDN, NFV

I. INTRODUCTION

Current and upcoming telecom networks, such as 5G and
O-RAN [1], rely on software-defined networks and virtual
network functions (VNFs). These technologies enable the rapid
and flexible development of network applications, bringing
new real-time industrial applications (e.g. remote surgery),
which seemed infeasible a few years ago, within reach (e.g.
industrial robotic arm control [2]). There is a strong demand
for these applications from both telecoms and manufacturing
companies. A common feature of these new applications is
that they impose stringent requirements on the network. For
example, augmented reality (AR) applications require both
10 ms end-to-end delay and Gbits-scale bandwidth for media
streaming [2]. Since this includes the media processing time
on the endpoints, the data plane can use only a small fraction

Tamás Lévai, Balázs Vass, and Gábor Rétvári are affiliated to
the Budapest University of Technology and Economics (BME), and
HUN-REN-BME Information Systems Research Group. Balázs Vass
is also affiliated to Babes, -Bolyai University, Cluj Napoca, Romania.

This work was partly supported by Project №135606
ANN_20, which has been implemented with support
from the National Research, Development and In-
novation Fund of Hungary. This study has received
funding from the European Union’s Horizon Europe
research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 101155116.

of the time budget. Likewise, industrial robotic arm motion
control leaves a one-way delay between endpoints of 250-1000
µs [2]. Since this includes the processing time of the endpoints,
the data plane has a fraction of this time frame. The 5G core
network also imposes similar stringent requirements, where the
end-to-end latency is 5-10 ms [3]. Although the latency limit
is higher, there is a significant transmission delay (e.g., due to
physical distribution) and processing time, which makes only
a fraction of the time available for the software data plane. It
is, therefore, important for the data plane that the transmission
is fast and the traffic of critical applications is real-time.

Unfortunately, software VNFs running on commercial off-
the-shelf (COTS) hardware usually cannot meet such firm
latency requirements, which leads to unpredictable delay and
throughput [4]. The main problem is that reasoning about
performance in software is much more difficult than modeling
hardware performance [5], [6]. A brute force solution is to
simply allocate more CPU cores and hope for the best [7].
Given the firm delay and cost-efficiency requirements, however,
this naïve approach is not sustainable. Another potential
approach is to offload VNF processing to dedicated hardware
(e.g., [8], [9], [10]). Requiring specialized hardware, however,
limits flexibility and feature velocity. Recently there has been
substantial work towards defining artificial intelligence and
machine learning workflows to realize the real-time control
loops [11], [12]; these solutions, however, do not make it
possible to reason about performance analytically and still
only exist as prototypes. In general, viable frameworks for
implementing real-time programmable control loops is still
missing [1], [2], [3], [13], [14], [15], [16]. Our main goal in
this paper is to fill this gap. Our main contributions are a
model for real-time VNF scheduling and a formal model-based
closed-loop scheduling algorithm, which can guarantee the
strict service-level objectives (SLOs) required to implement
real-time control loops with a precision similar to hardware. The
key of our design is a programmable real-time software switch
running on COTS hardware, installed with an operating system
with kernel-bypassing network stack (e.g., Intel DPDK [17]).
Complex network functions and applications are implemented
by manipulating the packet processing pipeline of the software
switch. We observe that real-time software data processing
is entirely contingent on the CPU scheduler. Consequently,
we tackle two important problems: i) resource allocation:
dynamically decompose the packet processing pipeline into
scheduling units (tasks) and allocate each task to a CPU core,
and ii) optimal scheduling: compute the optimal share of CPU

2

resources each task should receive to meet SLOs. Particular
contributions are as follows.
Analytical Model: We give a model (§II and §III) that allows
to formally reason about the rate and delay in disaggregated
VNF service chain. The model is validated and fine-tuned in
a real software switch. The model is extendable for multi-
switch case to guarantee end-to-end performance guarantees
for services spanning over multiple switches.
Scheduler Control: We introduce a model-predictive controller
(§IV) that adjusts the software switch scheduler to meet any
given SLOs at the millisec granularity. We present a gradient-
optimization-based control algorithm to optimally distribute
CPU fair-queuing scheduling weights to guarantee rate and
delay SLOs of services. We further improve the robustness of
the system by distributing tasks between CPU cores.
Numerical Evaluation: We validate our model with measure-
ments executed on the Berkeley Extensible Software Switch
(BESS) [18]. Using a custom simulation environment (§V),
we demonstrate the effectiveness of our solutions in synthetic
examples and realistic cellular network use cases (§VI). Our
simulator is available for download at [19].

We close the paper by discussing the related work (§VII)
and deriving the conclusions (§VIII).

II. BACKGROUND, CHALLENGES AND SYSTEM MODEL

Our main goal is to define a formal framework for im-
plementing real-time control loops for disaggregated network
functions. The key of our design is a programmable real-time
software switch running on COTS hardware, which schedules
the execution of the network functions and runs a fast packet
processing pipeline as a communication substrate between the
functions. Real-time execution is enforced by integrating the
pipeline into a closed control loop that adjusts the scheduling
of each function, so that the end-to-end processing chain meets
the delay and jitter SLOs imposed by the operator. Real-time
control in this context boils down to deciding a) how much
CPU power is needed per function so that each processing
chain receives exactly the requested end-to-end SLOs; b) how
to allocate functions to CPUs and set scheduling weights so
that no CPU is overburdened, and c) how to dynamically track
changes in the input packet rate and/or delay SLOs.

Answering these questions is not trivial due to the sheer
amount of system parameters. On hardware level, the execution
is affected by the CPU and the memory models (e.g., L1-L3
caching, NUMA, memory contention, branch prediction, etc.)
[20]. On top of this, the operating system adds additional
unknowns: interrupts (e.g., NMI and IRQ), the CPU scheduler,
Spectre/Meltdown mitigation, etc. Moreover, all of these
unknown system parameters are hidden during execution, only
the high-level parameters are observable.

We overcome this limitation in two steps. First we assume
a static setting. We manually decompose the VNFs to tasks,
where each task is defined as the smallest unit of execution
our scheduler can run. Given this decomposition, we define an
optimal control algorithm to compute weighted-fair-queuing
(WFQ) scheduling weights so that all queues in the system are
drained fast enough to keep latency below the delay-SLOs, and

each module is executed enough times to process total of the
rate-SLOs. The real-time scheduling control loop is depicted
in Fig. 1. In the next step we adapt our optimal scheduler to a
dynamic setting where resource allocation is optimized online,
always updating the previous state of the system in response to
the changes in input traffic rate, delay-SLOs, and/or rate-SLOs.

A. Dataflow Graphs and Scheduling

Software switches for running disaggregated network func-
tions (VPP [21], Click [22] and FastClick [23], BESS [18],
NetBricks [24], etc.) are usually designed as a dataflow-graph
runtime. This model is much akin to TensorFlow [25] for
machine learning or GStreamer [26] for multimedia.

In this model, modules (or nodes) represent packet process-
ing functions (VNFs). At the most basic level, each module
implements a single processing primitive, like parse/deparse,
match/action, encap/decap, filter/queue, which can then be
freely combined into a meaningful high-level pipeline. At a
higher level, modules can each implement complex network
functionality; for instance, a L3 router, a full 5G mobile gateway
data plane, etc. Our framework is completely agnostic to the
choice of modules (i.e., VNFs). Control-flow is represented
by linking modules with edges into complex network function
chains, with each edge connecting an outgate of an upstream
module to an ingate of a downstream module. A packet batch
placed by the upstream to the outgate will appear at the
corresponding downstream ingate immediately. Modules and
edges together form the dataflow graph.

Virtual network function chains are abstracted as flows
in our model, where each flow is a path from the flow’s
ingress module to the egress module and service delay and
rate SLOs are defined over this end-to-end path. Software
switches implement multi-level hierarchical scheduler with the
scheduling loops working in tandem. At the upper level, each
CPU core runs a CPU scheduler that is responsible for picking
the next schedulable unit (called a task) on the given CPU
core to execute next. Two common strategies are round-robin
(equal share) and weighted-fair-queuing (WFQ, weighted
share) [27]. CPU schedulers may operate in different resource
domains (e.g., CPU cycles, batch count, or packet rate). Each
task forms a scheduling unit, comprising a connected rooted
sub-graph of the dataflow graph with the root module being a
schedulable module (e.g., a NIC RX/TX queue) that can be
executed by the scheduler. At this lower level of execution,
the task’s input module drains the queue and automatically
executes the rest of the task’s pipeline in non-preemptible mode
(run-to-completion).

Controller

Idealized
system model

Gradient
opt.

Virtual Network Function ChainsRX TX

M
on

ito
r

gradient

d(Df)/dw
d(rf)/dw

C
ontrol

Figure 1. Real-time Control Loop.

3

B. System Model

We model the dataflow graph with a directed graph
G(V,E), where v ∈ V represent the modules and depen-
dencies between modules are modeled by arcs (i, j) ∈ E. For
each module v ∈ V its per-module processing cost cv denotes
the number of CPU cycles needed to process a single packet
through module v ∈ V , measured in [cycle/pkt]. We assume
for now that the module costs are given (we relax this later).

Each flow f is represented by a tuple of the following:
directed path pf through G, offered packet rate ρf [pk-
t/sec], rate-SLO (requested rate) Rf [pkt/sec], and delay-SLO
Df [sec]. The set of flows is denoted with F . Each task
Gt(Vt, Et) : t ∈ T is a connected subgraph of G with a
single input queue. Let Ft ⊆ F be the set of flows traversing
subgraph Gt, let pt,f be the path of a flow f ∈ Ft through Gt,
let πf = {(t1, t2), (t2, t3), ...} be the ordered sequence of task
pairs traversed by f , and let sf be the input task for f .

We assume there are S workers (i.e., CPU cores) available
to run the packet processing pipeline. The set of tasks assigned
to the i-th worker is denoted as Si = {ti,1, ti,2, ...}; these tasks
share the CPU time budget Ti of the worker (e.g., Ti = 2.4·109
cycle/sec for a 2.4 GHz CPU). For a task t, let it denote the
CPU that runs t. Furthermore, for each task t, wt denotes its
task scheduling WFQ weight, defining the share of CPU
time that task t receives at its worker. For each worker, we
normalize weights to 1:

∑
t∈Si

wt = 1, wt ≥ 0.
Fig. 2 depicts a sample packet processing pipeline taken

from [28] along with two different settings of scheduling
weights, each yielding different packet processing performance.
Namely, one of the settings is feasible while the other is not.
The dataflow graph consists of 3 tasks, where per-module
processing cost cv for the modules in task1 is 2 units and for
the modules in task2 is 1 unit, while modules in task0 have
negligible cost. The flows are defined as follows: flow1 goes
from NIC1 to NIC2 via task0 and task1, while flow2 goes from
NIC1 to NIC3 across task0 and task2. Here, flow1 requests
a rate-SLO of at least R1 = 1/3 units and a delay-SLO of
at most D1 = 5 units, while flow2 requests R2 = 1/5 and
D2 = 6. There is a single worker. First, consider a scheduling
regime where task1 and task2 receive equal CPU share (i.e.,
w1 = w2 = 1/2). Intuitively, flow1 is restricted to a rate of
w1/c1 = 1/4 < R1 units which violates the requested rate-SLO,
despite that the worst-case delay c2/w2 + c1/w1 = 4 + 2 > D1

meets the delay-SLO. At the same time, flow2 meets its SLOs
and there is some slack remaining: it gets a packet rate of 1/2
units and 4 + 1 = 5 units delay. Second, consider an unequal
CPU scheduling where we reallocate the resource slack from
the second task to the first one. With CPU shares of w1 = 4/5
and w2 = 1/5, flow1 receives 2/5 > R1 units of packet rate
and 2/ 4

5 + 2 < D1 units delay, and flow2 gets 1/5 = R2 units
rate and 5 + 1 = D2 units delay, both meeting the requested
SLOs.

C. Problem Statement

This intuitive example shows that allocating the limited CPU
resource share to executing each task has critical impact on
end-to-end processing rates and delays. The main task here is to

Table I
SYSTEM MODEL SYMBOLS

Notation Meaning
G(V,E) Dataflow graph with modules v ∈ V , arcs (i, j) ∈ E

cv
CPU cycles needed to process a single packet through
module v ∈ V [cycle/pkt]

f = (pf , ρf , Rf , Df)

f : a flow, that is a tuple of the following:
pf : a directed path through G
ρf : offered packet rate [pkt/sec]
Rf : rate-SLO (requested rate) [pkt/sec]
Df : delay-SLO [sec]

F set of flows
t, T task; set of tasks

Gt(Vt, Et)
graph of task t, that is a connected subgraph of G with
a single input queue

Ft the set of flows traversing subgraph Gt

pt,f the path of an f ∈ Ft through Gt

πf = {(t1, t2),
(t2, t3), ...}

path of flow f , that is an ordered sequence of pairs o
tasks traversed by flow f

sf the input task for flow f
Si = {ti,1, ti,2, ...},

i ∈ [1, S]
set of tasks run worker i

Ti time budget of worker i that is shared among the tasks
it the CPU/worker that runs task t

wt
the WFQ weight that defines the share of CPU time
task t receives at its worker i ∈ [1, S]

Further definitions of the ideal system
rt,f flow rate for flow f at task t ∈ T [pkt/sec]

τt,f

per-task processing cost for flow f at task t such that
f ∈ Ft [cycle/pkt]: CPU cycles to process one packet of
f through t:
τt,f =

∑
v∈pt,f

cv

θt

task processing time [cycle/pkt]: avg. number of CPU
cycles a task t ∈ Si may need to process a single packet

θt =

∑
f∈Ft

rt,f τt,f∑
f∈Ft

rt,f
=

∑
f∈Ft

(
rt,f

∑
v∈pt,f

cv

)
∑

f∈Ft
rt,f

B (constant) batch size [pkt/batch]
C [batch], usually, C = 1
Q queue size

d̂t,f

delay [sec] suffered by flow f at task t can estimated
from the model, it equals
max

{
maxt′∈Si:t′ ̸=t

(
CB

θt′
Tit

)
, Qθt
Tit

1
wt

}
+ CB θt

Tit

control the CPU share via the WFQ scheduling weights in order
for each flow (i.e., network function chain [29]) to meet its
requested rate-SLO and delay-SLO. We consider two problem
formulations with increasing complexity in this context. Our
first, simplified model assumes static resource allocation.

Problem 1 (Feasible scheduling with fixed resource allocation).
Given a set of static task graphs Gt and a fixed allocation of
tasks to workers Si, compute scheduling weights wt so that
rate-SLO Rf and delay-SLO Df is satisfied for each flow
f ∈ F .

In the second problem, resource allocation is adjustable online:

Problem 2 (Feasible scheduling with adaptive resource allo-
cation). Compute a resource allocation (i.e., task graphs Gt

and task allocations to workers Si) and the related scheduling
weights wt, so that the rate-SLO Rf and delay-SLO Df is
satisfied for each flow f ∈ F .

III. AN OPTIMAL SCHEDULING ALGORITHM

First, consider Problem 1. Given a static resource allocation
we define an ideal scheduler for optimal module execution
scheduling in a dataflow graph under delay and rate SLOs.

4

Queue Module

Task 1 NIC 2

Task 2
Queue Module NIC 3

Task 0

ModuleModuleNIC 1

Dataflow Graph

System setting: Flows: flow1: NIC1 → NIC2, flow2: NIC1 → NIC3.
Per-module processing cost cv of modules in task1 and task2, equal to 2 and 1, respectively.
Modules in task0 have negligible costs. There is a single worker.
Rate SLOs: flow1 requests at least a R1 = 1/3, R2 = 1/5
Delay SLOs: flow1: D1 = 5, flow2: D2 = 6

Bad scheduling: equal CPU time on tasks 1 and 2 (i.e., w1 = w2 = 1/2) flow1 is restricted to
w1/c1 = 1/4 < 1/3 = R1 unit of flow, and c2/w2 + c1/w1 = 4 + 2 = 6 > 5 = D1 units
of worst-case delay, however, flow2 gets a feasible 1/2 unit of flow and 4 + 1 = 5 unit delay.
Good scheduling: w1 = 4/5 and w2 = 1/5: this way, flow1 receives 2/5 > R1 (1/3) unit of
flow and 2/ 4

5 + 2 = 4.5 < D1 (5) unit delay, and flow2 gets 1/5 = R2 unit of flow and
5 + 1 = 6 = D2 unit delay.

Figure 2. Example Pipeline (see [28]).

A. Assumptions

First, we assume certain parameters are known, constant, and
observable; the intention is to see whether the problem is at
least theoretically solvable under very strong (and unrealistic)
assumptions. Later on, we will relax the assumptions that prove
detrimental in an implementation.

Assumption 1 (Unsplittable flows). Each flow takes only a
single path through G.

If a flow is split (e.g., for load-balancing) across multiple
paths, we add each possible path as a separate flow with
properly adjusted SLOs to the system.

Assumption 2 (Lossless modules). There is no internal packet
loss and/or packet drops inside the modules of the pipeline.

To be consistent with Assumption 2, dropped packets can
be directed to a dedicated loss gate.

B. Delay Estimation

In order to fulfill the delay-SLOs, we need a formal delay
estimation for each flow. First, we introduce some additional
notation. For flow f at task t ∈ T , we denote the flow rate
with rt,f [pkt/sec]. Again, we assume rt,f is known, and later
we will relax this assumption. The per-task processing cost
τt,f [cycle/pkt] for flow f at task t (where f ∈ Ft) is defined
as the number of CPU cycles needed to process one packet
of f through t. Observe that τt,f =

∑
v∈pt,f

cv. The task
processing time θt [cycle/pkt] measures the average number
of CPU cycles a task t ∈ Si needs to process a single packet:

θt =
∑

f∈Ft
rt,fτt,f∑

f∈Ft
rt,f

=

∑
f∈Ft

(
rt,f

∑
v∈pt,f

cv
)

∑
f∈Ft

rt,f
. The per-batch

task processing time Bθt [cycle] denotes the average number
of CPU cycles t ∈ Si needs to process a single batch of
packets, where B [pkt] is the (constant) batch size. In addition,
Q [packet] will denote the maximum queue size.

Using this notation, the delay for flow f is the sum of the
delays at each task t traversed by f . The per-task delay of the
flow is estimated by the sum of the queuing delay in the task’s
input queue plus the processing delay required to process a
packet of f through the pipeline along path pt,f . To compute
these terms, we need the following lemma.

Lemma 1. Given a stride-based WFQ scheduler [27], the
time between two consecutive runs of a task t equals Bθt

Titwt
on

average.

The proof of Lemma 1 is relegated to Appendix A.
Let us compute the queuing delay first, initially assuming that

each task t receives its fair share of CPU (i.e., proportional to
wt). In this case a packet may need to wait Q

B turnaround times
to be drained from the input queue. Observing that an average
scheduling turn takes Bθt

Titwt
secs (by Lemma 1), the queuing

delay for flow f at task t : f ∈ Ft equals Q
B

Bθt
Tit

1
wt

= Qθt
Tit

1
wt

[sec]. However, in certain cases a heavy-weight task t′ may
occupy the CPU for an extended time, starving the rest of the
tasks. In such cases, the queuing delay of each remaining task
t ̸= t′ equals the amount of time t has to wait until t′ finishes
running (recall, there is no preemption inside tasks) and yields
the CPU: maxt′∈Si:t′ ̸=t(B · θt′/Tit) [sec]. The queuing delay
is then the maximum of the above two expressions.

Modeling the packet processing delay is simpler: for flow f
the average packet processing delay at task t equals the cost
of processing a batch of size B, through the pipeline of t each
time t is scheduled: B θt

Tit
[sec].

Hence, the estimated total delay of flow f at task t is:
dt,f = max

{
maxt′∈Si:t′ ̸=t

(
B θt′

Tit

)
, Q
B

Bθt
Tit

1
wt

}
+ B θt

Tit
. In

the sequel, we use this delay estimation in the system model.
We will simplify the delay estimate in §IV-A and justify the
model empirically later in §VI-A.

C. Rate Estimation

In order to fulfill the rate SLO for each flow, each task
must be allocated enough CPU time so that it can process
all its offered load. Clearly, the offered load for task t is at
most the sum of the offered packet rates of the flows that
traverse the task:

∑
t∈Ft

rt,f . We also know that the amount
of work to be done at task t for each packet of f is τt,f =∑

v∈pt,f
cv. The total CPU share allocated to t is wt, and

this must be larger than or equal to the CPU time needed to
process the total offered load of t, which, based on the former,
yields the following constraint: 1

Tit

∑
f∈Ft

rt,fτt,f ≤ wt. This
estimation is true only as long as there is no packet drop in the
pipeline (recall Assumption 2), i.e., as long as flow conservation
holds. For this, the producers (upstreams) of a task cannot
generate more traffic than what the sinks (the downstream
task) can process; formally: rs,f = rt,f : f ∈ F, (s, t) ∈ πf

and rsf ,f = ρf . Without loss of generality, we sum these
constraints for each flow in the task to get a per-task constraint:∑

f∈Ft

∑
s:(s,t)∈πf

rs,f +
∑

f :sf=t ρf =
∑

f∈Ft
rt,f , for all

t ∈ T, where the term
∑

f :sf=t ρf accounts for the offered
rate of the flows f that enter the pipeline at task t. This will
be useful later when we satisfy the feasibility constraint by
enabling back-pressure in BESS since BESS does not support
per-flow back-pressure (like NFVnice [30]).

D. Feasible WFQ Scheduling Control with Fixed Resource
Allocation

We are now in the position to formulate an optimization
problem to answer Problem 1. Given dataflow graph G, flows F

5

with rate-SLOs Rf and delay-SLOs Df , and resource allocation
(Gt, Si), and supposing that cv : v ∈ V are known with
τt,f :=

∑
v∈pt,f

cv , the task is to compute WFQ task weights
wt so that the constraints (1)–(5) below are satisfied.

∑
t:f∈Ft

(
max

{
max

t′∈Si:t′ ̸=t

(
B

θt′

Tit

)
,
Qθt
Tit

1

wt

}
+B

θt
Tit

)
≤ Df , ∀f ∈ F

(1)∑
f∈Ft

rt,fτt,f ≤ wtTi, ∀t ∈ Si,∀i ∈ [1, S] (2)∑
f∈Ft

∑
s:(s,t)∈πf

rs,f +
∑

f :sf=t

ρf =
∑
f∈Ft

rt,f , ∀t ∈ T (3)

∑
t∈Si

wt ≤ 1, ∀i ∈ [1, S] (4)

wt ≥ 0, rt,f ≥ min{ρf , Rf}, ∀t ∈ T, f ∈ F. (5)

IV. A PRACTICAL REAL-TIME SCHEDULER

Unfortunately, the ideal system to solve Problem 1 is difficult
to apply in practice. First, it assumes a static resource allocation.
Second, it depends on the module costs cv (v ∈ V) that are
either not known or may vary with the workload, configuration
of v, etc. Third, we cannot measure parameter τt,f and flow-
rates rt,f directly from the running pipeline. Fourth, even if we
could, constraint (1) is a non-convex function of rt,f , which
is hard to optimize. Fifth, the system tries to track the offered
rate ρf even if ρf > Rf . To overcome these difficulties, below
we simplify the ideal system step-by-step until we arrive to a
convex formulation with all the remaining parameters easy to be
measured from the running system. This simplified system will
then lend itself readily to a fast online algorithm. As a next step,
we will present an actual online optimization algorithm for this
purpose; this tackles Problem 1. Finally, we turn to the fully-
fledged problem formulation posed in Problem 2 and consider
several practical dynamic resource allocation heuristics.

A. A Simplified Model

Back-pressure: An apparent problem is that constraint (3) must
be enforced at a packet-by-packet basis, and this dynamics
may be difficult to track from the scheduler. Back-pressure
is an in-band method to enforce flow conservation [30],
which automatically blocks upstream module execution when
some downstream gets overflown (i.e., the input queue of a
downstream module gets a backlog greater than a predefined
watermark). Enabling back-pressure, we automatically satisfy
(3) so we can remove this from the model, allowing us to treat
the flow rates rf = mint:f∈Ft rt,f as constant during control
periods. This also has the added benefit that we no longer need
to measure the input rate ρf from the running system, and
now the task processing times θt = const can be directly
measured from the pipeline.
Constant rate: Another problem is that, by (1), the queuing
delay is non-convex in variables rf . To overcome this problem,
we will assume that the dynamics of the input traffic is such
that the rate of flows can be considered constant inside a
control period. Earlier work showed that this assumption is

Table II
SYMBOLS FOR THE SIMPLIFICATIONS

Notation Meaning
rf realized rate of flow f , where rf = mint:f∈Ft rt,f
rt total packet rate at task t, where rt =

∑
f∈Ft

rt,f

λt
parameter for the queue size λt = 0 and λt = 1 mean empty
and full queues, respectively

α parameter, the higher the more optimization for delay SLOs
Li objective function value for worker i

generally true when the control period is small enough (e.g.,
below 10-100 ms) [31], [32]. Now, rf is no longer a variable
to be optimized but a parameter to be measured from the
running system. Then, since θt is now constant, non-convexity
vanishes from (1). Below, we will use the shorthand notation
rt :=

∑
f∈Ft

rf to denote the total packet rate of task t.
Dualization: A third issue is that without a precise measure-
ment on τt,f , we cannot decide if (2) is satisfied. To tackle this
problem, we dualize (2) by moving it to the objective and using
the queue size as dual. The idea is that if (2) is tight for a task
t then the queue size (i.e., the dual λt) grows, so we increase
the CPU share wt. Note that λt is not the usual Lagrangian
dual, but rather a parameter (queue size) we measure from
the system. The simplified system at this point looks like the
following:

min
∑

i∈[1,S]

∑
t∈Si

λt

(
1

Ti

∑
f∈Ft

rfτt,f − wt

)
(6)

∑
t:f∈Ft

(
max

{
max

t′∈Si:t′ ̸=t

(
B

θt′

Tit

)
,
Qθt
Tit

1

wt

}
+B

θt
Tit

)
≤ Df , ∀f ∈ F

(7)

∑
t∈Si

wt ≤ 1 i ∈ [1, S] (8)

wt ≥ 0 t ∈ T. (9)

Ignore processing delay: The delay at task t comprises the
queuing delay plus the time needed to process the packet
through t. In general, however, the queuing delay usually dom-
inates the processing delays by 1-2 orders of magnitude [31].
Thus, it is safe to assume that no heavy task will dominate the
queuing delay, and we can omit all the components from (7)
except for queuing: Q θt′

Titwt
. This has the additional benefit that

another difficult-to-measure parameter τt,f disappears from the
model:

min
∑

i∈[1,S]

∑
t∈Si

−λtwt (10)∑
t:f∈Ft

Qθt
Tit

1

wt
≤ Df f ∈ F (11)∑

t∈Si

wt ≤ 1 i ∈ [1, S] (12)

wt ≥ 0 t ∈ T (13)

Enforce delay SLOs in the objective: Most interior point
solvers will have trouble to account for the infeasibility
possibly introduced by a violation of the delay constraint
(11). To address this issue, we represent (11) with a linear
penalty function: P (f) = αmax

[
0,
∑

t:f∈Ft

θtQ
Titwt

−Df

]
.

Here, α ≥ 0 is a tunable parameter: the higher α is, the

6

Algorithm 1: Projected Gradient Method for a Worker
Input: for all task t ∈ Si, λt and θt given, and initial weight

set as wt[1] = 1/|Si|

1 Find: argmin{Li(w)|w ≥ 0,
∑|Si|

t=1 wt = 1}
2 k := 1
3 for t ∈ {1, . . . , |Si|} do

−∇Li(wt[k]) := λt +
1

wt[k]2
1

Tit
· αθt · |{f ∈ Ft :

DF > dF }|
4 d[k] := −(I − 1

|Si|
1)∇Li(wt[k])

if d[k] ̸= 0 then
get optimal ν[k] by Alg. 2

5 w[k + 1] := w[k] + ν[k] · d[k]; k := k + 1
else return w[k]

more we optimize for the delay. There is no penalty when the
schedule complies with the delay-SLO and the penalty rapidly
increases with infeasibility. Let the new objective function
L(w) be the sum of the latest objective (10) and, for all flows
f , the newly introduced penalty P (f). Finally, based on the
following Claim 1, we can and will rewrite (12) into equality
form.

Claim 1. We can rewrite (12) with equality without modifying
the optimum of L(w).

The proof of Claim 1 is relegated to Appendix B. The final
simplified model for answering Problem 1 is as follows, with
the objective function denoted by L(w):

min

(
α
∑
f∈F

max

0, ∑
t:f∈Ft

θtQ

Titwt
−Df

−
∑

i∈[1,S]

∑
t∈Si

λtwt

)
(14)∑

t∈Si

wt = 1, ∀i ∈ [1, S]; wt ≥ 0, ∀t ∈ Si (15)

B. A Model-predictive Scheduler Controller

In this section, we discuss an optimization algorithm to
solve the simplified system model (14)–(15). Our optimization
algorithm will apply the projected gradient method, using the
(negative) gradient of the objective:

(∆w)t = −∂L(w)

∂wt
= α

∑
f∈Ft:df>Df

θtQ

Tit

1

w2
t

+ λt.

Here, θt can be measured from the data plane as the total
CPU consumption of task t divided by the total input packet
rate rt (thus, we do not need flow delay df and flow-rate rf).
In addition, let λt ∈ {0, 1} be a binary parameter accounting
for the queue size at t. We set λt as follows: if there exists
f ∈ Ft : rt,f ≤ (1− δ)Rf (where e.g. δ = 0.01 is a tolerance)
and the queue size for t is above the high-watermark then we
set λt = 1; otherwise if the queue size for t is below the low-
watermark we set λt = 0. Observe that (∆w)t is non-negative
for any task t. Intuitively, each task is “greedy”, constantly
requesting more CPU share to process more packets with lower
latency. Allowing less critical tasks to give up CPU share, for
each worker i, we project the gradients of tasks assigned to i
into hyperplane

∑
t∈Si

(∆w)t = 0 and perform a line search.
We can now utilize the convergent version of Rosen’s

projected gradient method [33, pp. 593-601] to solve the model.

Algorithm 2: Modified Line Search (Polyline Search)
Input: w[k], d[k], ϵ, ns, νmaxstep, for each task t : λt

1 Φ := Si

2 dΦ : vector of coordinates of d[k] corresponding to free
(unblocked) tasks

3 δ := 0; w := w[k]; M := ∅
while δ < νmaxstep and |Φ| ≥ 2 do

4 νinc := min{1−wt/dt|dt > 0, t ∈ Φ}
5 νwless := min{wt/−dt|dt < 2ϵ, t ∈ Φ}
6 νpdec := min{wt/−2dt|dt < 0, t ∈ Φ}
7 νmax := min{νinc, νpdec, νwless, νmaxstep − δ}
8 add to M this: argmin{Li(wk + ν · dk)|ν ∈ [0, νmax]}
9 remove blocked tasks from Φ

10 recalculate dΦ, dΦ := (I|Φ| − 1
|Φ|1Φ)dΦ

11 δ := δ + νmax; w := w + νmax
return argminM

In Alg. 1, the outer cycle ensures an iterative updating of the
weights w along the projected gradient. Here, for any column
n-vector x, y = Px = (I− 1

n1)x is an orthogonal projection
of x to the hyperplane 1Tx = 0, where 1T is a row n-vector
of all ones and 1 is an n× n matrix of all ones. The modified
line search (polyline search) along the projected gradient is
detailed in Alg. 2. Here, the maximum step size νmax may
be a static constant. Constant νinc is introduced to ensure that
no weight exceeds 1, while νwless re-ensures that no weight
drops below 0 to conform to (15). In fact, νwless ensures that
no weight drops below ϵ (a small positive constant), which
enforces the intuitive observation that letting wt ∼ 0 the delay
of the flows traversing t would skyrocket. Value νpdec plays a
similar role: to prevent overly steep dynamics, saves half of
the weight of each task in each iteration. Let Fi denote the
set of flows traversing worker i and let ns denote the number
of equidistant points the line search visits. Lemma 2 shows
that our optimization algorithm in each iteration either claims
optimality, or departs towards the optimum.

Lemma 2. In each step, Alg. 1 either terminates at a KKT
point or else it generates an improving feasible direction. The
time complexity of each step is O

(
|Si|2|Fi| · ns

)
.

The proof of Lemma 2 is relegated to Appendix C. Note
that if there are multiple workers, then the total complexity of
a control loop is O

(
ns ·

∑
i∈[1,S] |Si|2|Fi|

)
.

C. Dynamic Resource Allocation

So far, we assumed that the allocation of tasks to CPUs
(i.e., Si) is fixed. However, a static task allocation can easily
become suboptimal with a change in the input rates or SLOs.
Unfortunately, as the claim below shows, the dynamic resource
allocation problem posed in Problem 2 is intractable.

Claim 2. It is NP-hard to decide whether there exists an
allocation of tasks to workers that enables meeting the rate
and delay SLOs.

The proof of Claim 2 is relegated to Appendix C. Note that
if there are multiple workers, then the total complexity of a
control loop is O

(
ns ·

∑
i∈[1,S] |Si|2|Fi|

)
.

7

We propose a dynamic task-reallocation heuristic to tackle
intractability. In each iteration, it performs the following steps
to migrate a task from an overused CPU to an underutilized one:
(1) wait until the system gets stabilized; (2) detect underused
and overused CPUs; (3) choose a task on an overused CPU to
be migrated; (4) choose an underused CPU that has enough
free capacity to run the task; and finally (5) reallocate the task.
Here, a CPU i is underused if, for all t ∈ Si, λi = 0, otherwise
it is overused. Let Ct =

∑
f∈Ft

rt,fτt,f be the CPU usage of
task t ∈ Si [cycle/sec], and let Di = Ti −

∑
t∈Si

Ct be the
spare capacity on an underused CPU i [cycle/sec]. Then, task
t can be moved from an overused CPU j to an underused
CPU i if Ct ≤ Di. We note that all required parameters can
be easily measured from the running system. We embed the
above task migration step into various heuristic strategies for
choosing the task to be moved: 1) greedy: choose the "most
expensive" task that can be moved; 2) max flow-affinity: try
to move tasks traversed by each flow to the same CPU; and
finally 3) max SLO-compliance: move candidate task traversed
by the flows with the least strict delay-SLOs. In the evaluations
(§VI), we combine these resource allocation heuristics with the
projected gradient based controller for solving the full-fledged
scheduling problem defined in Problem 2.

V. SIMULATOR

We created a discrete time simulator to experiment with our
controllers. Fig. 3 summarizes the workflow of the simulator.
We initialize the simulator with the given system G, Gt, Ti, cv
and flows f = (pf , ρf , Rf , Df), f ∈ F , and we choose a set
of initial task weights wt : t ∈ T . Then, the following steps are
repeated by the simulator in each iteration: (1) run the system
model detailed in §II-B to produce the system state and then
(2) run the optimizer to compute optimal wt with respect to
the system state. Given scheduling weights wt for each task

Run
system model

System state
at τ

Run gradient
optimization

New weights
wt(τ)

Initial CPU
shares wt(0)

τ := 0

τ := τ + 1

Figure 3. Simulator Workflow.

t, the state of the system can be obtained as follows. First,
compute per-task packet rates rt,f by solving the following
linear program:

max
∑

f∈F
rf (16)∑

f∈Ft

rt,fτt,f ≤ wtTit t ∈ Si, i ∈ [1, S] (17)

rs,f = rt,f f ∈ F, (s, t) ∈ πf (18)
rf = rsf ,f f ∈ F (19)

0 ≤ rf ≤ ρf , rt,f ≥ 0 t ∈ T, f ∈ Ft. (20)

Then, determine the per-packet task delays: θt =∑
f∈Ft

rt,fτt,f∑
f∈Ft

rt,f
. Finally, compute the flow delays: df =∑

t:f∈Ft

(
max

{
maxt′∈Si:t′ ̸=t

(
B θt′

Tit

)
, Q
B

Bθt
Tit

1
wt

}
+B θt

Tit

)
.

In an actual implementation, the "back-pressure" signal λt

could be measured from the running system (recall, we have
to set λ = 1 whenever the queue size would be above the
threshold); unfortunately, in our simulator, we have to obtain
this parameter from the system model. A task t is stressed
if, given its CPU share wt, it does not have enough compute
resources to process all traffic it receives. Based on this, we
use the following rule: after solving (16)–(20), set λt = 1
for t ∈ T exactly if task t utilizes all its CPU share wtTit :∑

f∈Ft
rt,fτt,f ≥ (1− δ)wtTit , and there is demand for more

traffic: min(Rf , ρf) ≥ (1− δ)rf , where δ is again a tolerance,
e.g., δ = 0.01.

At this point, we have all the parameters available to run
the model: we execute a single step of the projected gradient
algorithm (see Alg. 1) followed by a single line-search (see
Alg. 2) to obtain the new weights. The simulator then goes back
to obtaining the system state with respect to the new scheduling
weights, and this loop is repeated until the total system time
exceeds a given limit. We implemented the simulator in Python;
the code is available for download at [19].

VI. EVALUATION

We evaluated our real-time scheduler controller logic in
extensive simulation studies. Since the model critically depends
on the delay estimate (§III-B), first we confirm this estimate on
a real software switch. Then, we present a detailed numerical
evaluation of our controller logic (§IV-B) with the simulator
and finally we benchmark our dynamic resource allocation
scheme.

To the best of our knowledge, currently, there is no official
benchmark suite available to test our control loops. Therefore,
we will use synthetic and real-life sample pipelines from [30],
[32] taken from a 5G benchmark suite [4] for the evaluations.
In particular, for the synthetic tests, we chose the fork example
pipeline of Fig. 2 and a taildrop pipeline consisting of 3
tasks, from which the last one is heavyweight [30]. As a
realistic pipeline, we chose the 5G Mobile Gateway (MGW)
from [4]. The pipelines are originally implemented in BESS,
then converted to our simulator. We assume workers have unit
speed, we set B = Q = 1, and we let the line search to make
ns = 5 tries at each line segment with a maximum step size
νmaxstep chosen as 0.01 or 0.025.

A. Validating the Delay Estimate

A dependable delay estimation is crucial for scheduling
latency-sensitive pipelines. Hence, our evaluation starts with
the validation of the task delay estimate of §III-B. For this
purpose, we implement the fork example pipeline of Fig. 2
in a widely-deployed software switch: BESS [18], [34]. We
adjust the following parameters: i) the fan-out of Task0 (the
number of tasks connected to the egress module of Task0);
ii) the execution time of Task1; and iii) the ratio of weights
between Task1 and other egress tasks (e.g., Task2).

Fig. 4 shows the condensed results (delay estimate and
measured delay percentiles) with two egress tasks (Task1 and
Task2) and task execution times varying in 100, 10k, and
10M CPU cycles as Task1/Task2 scheduling weight ratio is set

8

between (0, 1]. We find that, except for extreme Task1/Task2
weight ratios, the delay estimate coincides with the 99-th
percentile measured delay, with a slight tendency for the model
to overshoot the delay. This confirms that our delay estimate
is a good fit to drive the real-time scheduling control loop.

B. Control Algorithm
Our first round of evaluations focuses on establishing the

viability of the control algorithm and understand the effect of
choosing the optimization parameter α, which, recall, decides
whether the scheduler will favor satisfying the delay-SLOs at
the cost of potentially violating the rate-SLOs (α large) or the
vice versa (α small). Then, we will run the model on more
complex pipelines to understand the control dynamics.

First, we tested our controller on the fork pipeline of Fig. 2.
We deliberately set the SLOs so that there is no way for
the controller to satisfy all: this stresses the controller to the
extreme and allows us to observe the effect of choosing α. Our
results are summarized in Fig. 5. First, we observe that the
controller chooses the task scheduling weights so that in each
step the system is driven closer to the SLOs. This justifies the
basic viability of the model. Second, as it was expected the
lower the value of α the more the controller favors fulfilling
the rate-SLOs at the cost of violating the delay requirements:
for α = 0.05 the rate-SLO of both flows and the delay-SLO
of the first flow are all satisfied but the delay-SLO of the
other flow is violated, while for α = 1 the delay-SLOs all
hold (with a small error for the first flow) but one of the rate-
SLOs is violated. In the context of O-RAN delay-SLOs are
more important; correspondingly in the below we will use the
setting α = 1 (i.e., favor delay at the cost of rate). Note that
we found an SLO violation in all examples; this is because,
recall, we deliberately set non-fulfillable SLOs. Re-running
the evaluations with looser SLOs we found that our control
algorithm can always drive the system to an SLO-compliant
state in just a couple of iterations (results not shown here).
Interestingly, we find the same “sawtooth pattern” in the control
action that is well-known in typical online controllers [35].

We repeated the benchmark on the taildrop pipeline with a
single flow. Recall, this pipeline comprises a chain of 3 tasks,
the last being the most expensive. Consequently, an equal
weight setting will be suboptimal: the last heavyweight task
will not get enough CPU share to run the costly processing on
all packets fed to it by the preceding lightweight tasks, causing
a so called taildrop phenomenon where we spend significant
resources processing traffic just to drop it at a later stage in the
pipeline [30]. Clearly, in order to remedy this the scheduling
weight of the last task needs to be increased. Fig. 6a shows
that this is exactly what our controller does: starting from
approximately identical initial task weights it rapidly scales up
the scheduling weight of the heavy task (Task 2) and decreases
the weight of the other tasks. Eventually, at the 14-th iteration
all SLOs are met and internal packet drop disappears (this can
be tracked from observing the queue size signal: when λ = 1
there is a task input queue that is filled to capacity and drops
packets).

The last evaluation was performed on a mobile gateway
packet-processing (MGW) pipeline (Fig. 7) taken from the

official 5G NFV benchmark suite [4]. A 5G mobile gateway
connects a set of mobile user equipments to the public Internet.
This requires a complex pipeline with differentiated traffic
classes (called “bearers” here for simplicity). Traffic flows
either in uplink or downlink direction, and is further classified
among bearers. Users may have connections on multiple bearers
both in the uplink and downlink direction, and each user’s
connection is considered a separate flow. In our evaluations,
bearer0 (both uplink and downlink) represents mobile voice and
multimedia traffic with firm performance requirements, while
the rest of the bearers represent bulk traffic. The number of
concurrent flows is 2× the number of users on the first bearer
(bearer0) due to separate uplink and downlink connections. The
number of bearers, users, and users of the voice/multimedia
bearers (bearer0 users) as well as the capacity and the number
of CPUs are parameters.

Fig. 6b shows results on an MGW pipeline with 37 modules
organized into 5 tasks and 3 workers: the ingress and egress
tasks both have a separate worker, while the bearerdl1,
bearerul1 and bearer0uluser0 tasks share a common
worker (see the full description in our GitHub repository [19]).
Our findings for this complex benchmark are similar as before:
in just about a dozen iterations the controller settles the system
in a fully SLO-compliant state and completely removes internal
packet drop.

C. Dynamic Resource Allocation

In the context of this work, resource allocation means
decomposing the dataflow graph that represents the processing
pipeline into separate subgraphs, each representing a basic
scheduling unit (i.e., task). So far we have experimented
with static resource allocations; in this evaluation round we
benchmark our dynamic resource allocations schemes.

First we experiment with the taildrop pipeline, but this time
setting tight SLOs so that the system does not have enough
resources to fulfill the SLOs. Fig. 8a shows what happens
after we open a new worker at iteration 10 and enable the
greedy task reallocation scheme. Not surprisingly, the greedy
resource re-allocation scheme quickly moves the heavy task
from the over-utilized worker to the new (underutilized) CPU,
driving the system to an SLO-compliant state in a single step.
Fig. 8b shows a benchmark where the module costs and SLOs
are set so that further optimization is needed to achieve SLO
compliance after the task reallocation, and Fig. 8c shows the
same test on the fork pipeline (again enabling a new worker at
step 10). Our observations are similar as before: our scheduler
control loops quickly drive the system to an optimal state.

Finally, we evaluated the dynamic resource allocation scheme
on more complex examples. Fig. 8d shows the results on the
taildrop pipeline, but this time with 7 processing-heavy tasks
that together greatly overload the (single) initial worker. To
remedy this, in the 10-th step, we add a new worker to the
system. We observe that the greedy task migration strategy is
effective in this case too: by moving tasks across workers it
quickly removes SLO-violation. Eventually, in step 72 all SLOs
are satisfied and internal packet drops disappear, confirming
that our combined resource allocation and scheduling strategy

9

0 200 400 600 800 1,000

105

108

1011

Task1 Weight

Ta
sk

1
D

el
ay

/E
st

.[
ns

] Task1 P50
Task1 P95
Task1 P99
Task1 Est.

02004006008001,000
104

105

106

107

Task2 Weight

Ta
sk

2
D

el
ay

/E
st

.[
ns

]

(a) Fast Task 1

0 200 400 600 800 1,000

105

108

1011

Task1 Weight

Task2 P50
Task2 P95
Task2 P99
Task2 Est.

02004006008001,000
104

105

106

107

Task2 Weight

(b) Equal Execution Times

0 200 400 600 800 1,000

105

108

1011

Task1 Weight

02004006008001,000
104

105

106

107

Task2 Weight

Task2 P50
Task2 P95
Task2 P99
Task2 Est.

(c) Slow Task 1

Figure 4. Validating Delay Estimate: Example Pipeline (Fig. 2) implemented in BESS with Task 2 execution taking 10k CPU cycles while Task 1 execution
time varies: (a) 100, (b) 10k, and (c) 10M CPU cycles. Note: task weights on x-axes follow the BESS weights notation where wt = 1 requires 1000 units.

0.15

0.2

0.25

0.3

0.35

Fl
ow

R
at

e

6

8

10

Fl
ow

D
el

ay

Flow 0 Flow 0 (SLO)
Flow 1 Flow 1 (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

20 40

0

1

L
am

bd
a

Task 0 Task 1 Task 2

(a) Large (α = 1.0)

0.15

0.2

0.25

0.3

0.35

6

8

10

Flow 0 Flow 0 (SLO)
Flow 1 Flow 1 (SLO)

0

0.5

1

10 20 30 40 50

0

1

Task 0 Task 1 Task 2

(b) Medium (α = 0.2)

0.15

0.2

0.25

0.3

0.35

6

8

10

Flow 0 Flow 0 (SLO)
Flow 1 Flow 1 (SLO)

0

0.5

1

20 40

0

1

Task 0 Task 1 Task 2

(c) Small (α = 0.05)

Figure 5. Effect of parameter α responsible for weighing in the possible delay SLO violations, measured on the fork pipeline.

can rapidly find the system optimum. We also repeated the
benchmark in the MGW pipeline, see Fig. 8e. This time we did
not add a new CPU, we just enabled task migration at step 10.
At this point the controller reallocated the bearerul1 task
to the worker of the ingress task, decreasing the number of
control periods needed to achieve SLO compliance from 15 to
12 steps compared to the fixed resource allocation setting.

VII. RELATED WORK

VNF Performance Prediction: Running multiple NFs on a
single host leads to performance degradation due to contention
in shared hardware resources such as last-level CPU cache [36],
[37] or packet I/O [6]. Performance prediction of VNFs is
therefore crucial for guaranteeing SLOs. SLOMO [6] predicts
collocated VNF performance using machine learning. Bolt [5]
leverages symbolic execution to estimate the processing cost
of different traffic classes processed by a single VNF; also

generalized to NF chains too. In addition, [38] presents a
discrete Markovian queuing model and [39] presents a discrete-
time model for a single-queue single-server system with known
service-time distribution. As opposed to our work, most of
these methods require extensive profiling of NFs. Recall, we
relax the requirement of known module processing costs in
§IV.

Meeting SLOs in NFV Platforms: Besides high performance,
meeting SLOs is a highly-desired behavior of NFV platforms.
Grus [9], an NFV framework with GPU offload, introduces a
multi-layer system with admission control and delay prediction
model to guarantee delay-SLOs. As opposed to our work,
Grus guarantees delay-SLO only for single VNF deployments,
and the model is tailored for the GPU offloading scenario. In
contrast to Grus, ResQ [37] provides performance isolation at
CPU last-level cache solving the noisy neighbor problem of
VNFs, and enables enforcing SLOs. NFV-RT [40] provides

10

4

5

6

·10−2

Fl
ow

R
at

e

50

55

60

Fl
ow

D
el

ay

Flow 0 Flow 0 (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

5 10 15 20

0

1

L
am

bd
a

Task 0 Task 1 Task 2

(a) Taildrop Pipeline on 3 Nodes
Task costs: Task0 & Task1: 1,Task2: 10.

0

2

4

6

8

0.4

0.6

user0 ul qos
user0 dl qos
user0 ul bulk1
user0 dl bulk1
user1 ul bulk1
user0 dl bulk1
user0 ul/dl qos
(SLO)
user0/1 ul/dl bulk1
(SLO)

0

0.5

1

2 4 6 8 10 12 14 16

0

1

ingress
egress
bearer0 ul user0
bearer dl 1
bearer ul 1

(b) MGW Pipeline: single user on QoS and Bulk bearers (uplink/downlink).

Figure 6. Effect of the controller on pipelines taildrop and MGW accompanied with simultaneously satisfiable delay and rate SLOs, respectively. With α = 1,
the controller found a feasible solution in 15 control periods in both cases.

Queue
Dir

selector

Bearer
selector

Bearer
selector

..
.

User
selector

User
selector

User
selector

User
selector

. .
.

. .
.

Upstream processing

Upstream processing

Upstream processing

Upstream processing

Downstream processing

Downstream processing

Downstream processing

Downstream processing

. . .

. . .

. . .

. . .

L3
table

uplink

downlink

QoS:

Bulk:

Figure 7. Mobile Gateway (MGW) Pipeline.

soft real-time guarantees for NF service chains deployed in
data center environment using a fat-tree topology. Batchy [32]
is a general-purpose dataflow graph scheduler framework,
which enables enforcing delay-SLOs at the millisecond time
scale even at multiple millions of packets per second of
throughput. To achieve this, Batchy uses controlled queuing
to efficiently reconstruct fragmented batches in accordance
with strict SLOs. However, Batchy considers only delay-SLOs
and it is restricted to a single task on a single worker (but
see also [31]). Quadrant [29] enables FaaS abstractions in
NFV workloads, and provides a performance-aware scheduler.
Quadrant adaptively controls number of batches to process at
a single poll to satisfy SLOs while minimizing context switch
overhead coming from the containerized environment of the
NF runtime, and supports delay-SLO-based scaling of NF-
chains. As oppose to our work, Quadrant is a complete NFV
platform. As opposed to these works, our closed loop scheduler
is built on an analytical system model, without relying on static
performance benchmarks or costly prior AI/ML training. In
addition, our controllers can handle both rate- and delay-type
SLOs.

VIII. CONCLUSIONS

In this paper, we present a controller framework for real-time
execution of disaggregated services on commercial off-the-shelf
hardware. The controller relies on a comprehensive analytical
model, combining the formal model with monitoring data to
find an optimized schedule rapidly. We present a model-based
gradient-optimization control algorithm to provide optimal
scheduling. We evaluate our model on a set of synthetic and
realistic pipelines. Our results show that the model predicts
the delays reliably, and the control algorithm can converge
the system to an SLO-compliant state in just a few iterations,
potentially performing dynamic resource allocation when SLOs
can not be met otherwise. Future work involves dynamically
adjusting parameters such as controller aggressiveness, and
extending the model to multiple switches.

REFERENCES

[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, Understanding
O-RAN: Architecture, Interfaces, Algorithms, Security, and Research
Challenges, Commun. Surveys Tuts. 25 (2) (2023) 1376–1411. doi:
10.1109/COMST.2023.3239220.
URL https://doi.org/10.1109/COMST.2023.3239220

[2] F. Voigtländer, A. Ramadan, J. Eichinger, C. Lenz, D. Pensky, A. Knoll,
5G for robotics: Ultra-low latency control of distributed robotic systems,
in: 2017 International Symposium on Computer Science and Intelligent
Controls (ISCSIC), IEEE, 2017, pp. 69–72.

[3] NGMN Alliance, 5G white paper, Next generation mobile networks,
white paper (2015) 1–125.

[4] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh,
G. Rétvári, The Price for Programmability in the Software Data
Plane: The Vendor Perspective, IEEE Journal on Selected Areas in
Communications 36 (12) (2018) 2621–2630.

[5] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, G. Candea,
Performance Contracts for Software Network Functions, in: 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), USENIX Association, Boston, MA, 2019, pp. 517–530.
URL https://www.usenix.org/conference/nsdi19/presentation/iyer

[6] A. Manousis, R. A. Sharma, V. Sekar, J. Sherry, Contention-Aware Per-
formance Prediction For Virtualized Network Functions, in: Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’20, Association
for Computing Machinery, New York, NY, USA, 2020, p. 270–282.

https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://doi.org/10.1145/3387514.3405868
https://doi.org/10.1145/3387514.3405868

11

4

6

8

10
·10−2

Fl
ow

R
at

e

30

40

50

60

Fl
ow

D
el

ay

Flow 0
Flow 0 (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

5 10 15 20

0

1

L
am

bd
a

Task 0 Task 1 Task 2

(a) Taildrop on 2 workers, Greedy Task Migration

0.2

0.3

0.4

12

14

16

18

Flow 0
Flow 0 (SLO)

0

0.5

1

5 10 15 20

0

1

Task 0 Task 1 Task 2

(b) Modified Taildrop, Greedy Task Migration

0.5

1

Fl
ow

R
at

e

4

6

8

10

Fl
ow

D
el

ay

QoS QoS (SLO)
Bulk Bulk (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

5 10 15 20

0

1

L
am

bd
a

Task 0 Task 1 Task 2

(c) Least Strict delay-SLO Task Migration on a
Modified Fork Pipeline

2

3

4
·10−2

Fl
ow

R
at

e

200

250

300

350

Fl
ow

D
el

ay

Flow 0 Flow 0 (SLO)

0

0.5

1

Ta
sk

W
ei

gh
t

10 20 30 40 50 60 70

0

1

L
am

bd
a

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

(d) Greedy Task Migration on a Taildrop Chain of 7 Tasks

0

2

4

6

8

0.4

0.6

0

0.5

1

5 10 15

0

1

(e) Greedy Task Migration on MGW Pipeline
(legend on Fig. 6b)

Figure 8. Task migration results. The reallocation controller runs in every 10-th control period.

doi:10.1145/3387514.3405868.
URL https://doi.org/10.1145/3387514.3405868

[7] P. Martin, Scaling an Application, Apress, Berkeley, CA, 2021, Ch.
Scaling an Application, pp. 73–78. doi:10.1007/978-1-4842-
6494-2_7.
URL https://doi.org/10.1007/978-1-4842-6494-2_7

[8] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, J. Sherry, Achieving
100Gbps Intrusion Prevention on a Single Server, in: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), USENIX Association, 2020, pp. 1083–1100.

[9] Z. Zheng, J. Bi, H. Wang, C. Sun, H. Yu, H. Hu, K. Gao, J. Wu, Grus:
Enabling Latency SLOs for GPU-Accelerated NFV Systems, in: IEEE
ICNP, 2018, pp. 154–164.

[10] H. N. Schuh, W. Liang, M. Liu, J. Nelson, A. Krishnamurthy, Xenic:
SmartNIC-Accelerated Distributed Transactions, in: Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP
’21, Association for Computing Machinery, New York, NY, USA, 2021,
p. 740–755. doi:10.1145/3477132.3483555.
URL https://doi.org/10.1145/3477132.3483555

[11] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, ColO-RAN:
Developing Machine Learning-based xApps for Open RAN Closed-loop
Control on Programmable Experimental Platforms, IEEE Transactions on
Mobile Computing (2022) 1–14doi:10.1109/TMC.2022.3188013.

[12] X. Wang, J. D. Thomas, R. J. Piechocki, S. Kapoor, R. Santos-Rodríguez,
A. Parekh, Self-play learning strategies for resource assignment in
Open-RAN networks, Computer Networks 206 (2022) 108682.
doi:https://doi.org/10.1016/j.comnet.2021.108682.
URL https://www.sciencedirect.com/science/article/pii/
S138912862100551X

[13] D. Bankov, E. Khorov, A. Lyakhov, M. Sandal, Enabling real-

time applications in wi-fi networks, International Journal of
Distributed Sensor Networks 15 (5) (2019) 1550147719845312.
arXiv:https://doi.org/10.1177/1550147719845312,
doi:10.1177/1550147719845312.
URL https://doi.org/10.1177/1550147719845312

[14] N. Nikaein, Processing radio access network functions in the cloud:
Critical issues and modeling, in: Proceedings of the 6th International
Workshop on Mobile Cloud Computing and Services, MCS ’15, 2015,
p. 36–43.

[15] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, T. Braun,
Towards a Cloud-Native Radio Access Network, Springer International
Publishing, 2017, Ch. Towards a Cloud-Native Radio Access Network,
pp. 171–202.

[16] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, R. Jana, N. Nikaein, A
survey on Open Radio Access Networks: Challenges, research directions,
and open source approaches (2022).
URL https://arxiv.org/abs/2208.09125

[17] Intel, Data Plane Development Kit, http://dpdk.org (2024).
[18] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, S. Ratnasamy, SoftNIC: A

Software NIC to Augment Hardware, Tech. Rep. UCB/EECS-2015-155,
EECS Department, University of California, Berkeley (May 2015).
URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
155.html

[19] Source Code and Artifacts on Github, https://github.com/hsnlab/realtime-
nf-scheduling-in-oran (2024).

[20] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, G. Bianchi, Survey of performance acceleration
techniques for Network Function Virtualization, Proceedings of the IEEE
107 (4) (2019) 746–764. doi:10.1109/JPROC.2019.2896848.

[21] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, D. Rossi,

https://doi.org/10.1145/3387514.3405868
https://doi.org/10.1145/3387514.3405868
https://doi.org/10.1007/978-1-4842-6494-2_7
https://doi.org/10.1007/978-1-4842-6494-2_7
https://doi.org/10.1007/978-1-4842-6494-2_7
https://doi.org/10.1007/978-1-4842-6494-2_7
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1109/TMC.2022.3188013
https://www.sciencedirect.com/science/article/pii/S138912862100551X
https://www.sciencedirect.com/science/article/pii/S138912862100551X
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108682
https://www.sciencedirect.com/science/article/pii/S138912862100551X
https://www.sciencedirect.com/science/article/pii/S138912862100551X
https://doi.org/10.1177/1550147719845312
https://doi.org/10.1177/1550147719845312
http://arxiv.org/abs/https://doi.org/10.1177/1550147719845312
https://doi.org/10.1177/1550147719845312
https://doi.org/10.1177/1550147719845312
https://arxiv.org/abs/2208.09125
https://arxiv.org/abs/2208.09125
https://arxiv.org/abs/2208.09125
https://arxiv.org/abs/2208.09125
http://dpdk.org
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://github.com/hsnlab/realtime-nf-scheduling-in-oran
https://github.com/hsnlab/realtime-nf-scheduling-in-oran
https://doi.org/10.1109/JPROC.2019.2896848

12

High-Speed Software Data Plane via Vectorized Packet Processing, IEEE
Communications Magazine 56 (12) (2018) 97–103.

[22] R. Morris, E. Kohler, J. Jannotti, M. F. Kaashoek, The Click Modular
Router, in: ACM SOSP, 1999, pp. 217–231.

[23] T. Barbette, C. Soldani, L. Mathy, Fast Userspace Packet Processing,
in: ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, 2015, pp. 5–16.

[24] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, S. Shenker, NetBricks:
Taking the V out of NFV, in: USENIX OSDI, 2016, pp. 203–216.

[25] H.-Y. Chen, et al., TensorFlow: A system for large-scale machine learning,
in: USENIX OSDI, Vol. 16, 2016, pp. 265–283.

[26] W. Taymans, S. Baker, A. Wingo, R. S. Bultje, S. Kost, GStreamer
Application Development Manual, Samurai Media Limited, United
Kingdom, 2016.

[27] C. A. Waldspurger, W. E. Weihl, Stride scheduling: Deterministic
proportional share resource management, Massachusetts Institute of
Technology. Laboratory for Computer Science, 1995.
URL http://www.waldspurger.org/carl/papers/stride-mit-tm528.pdf

[28] C. Lan, An Architecture for Network Function Virtualization, Ph.D.
thesis, UC Berkeley (2018).

[29] J. Wang, T. Lévai, Z. Li, M. A. M. Vieira, R. Govindan, B. Raghavan,
Quadrant: A Cloud-Deployable NF Virtualization Platform, in: Proceed-
ings of the 13th Symposium on Cloud Computing, SoCC ’22, Association
for Computing Machinery, New York, NY, USA, 2022, p. 493–509.
doi:10.1145/3542929.3563471.
URL https://doi.org/10.1145/3542929.3563471

[30] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan,
T. Wood, M. Arumaithurai, X. Fu, NFVnice: Dynamic Backpressure and
Scheduling for NFV Service Chains, in: ACM SIGCOMM, 2017, pp.
71–84.

[31] T. Lévai, G. Rétvári, Batch-scheduling Data Flow Graphs with Service-
level Objectives on Multicore Systems, INFOCOMMUNICATIONS
JOURNAL 14 (2022) 43–50. doi:10.36244/ICJ.2022.1.6.

[32] T. Lévai, F. Németh, B. Raghavan, G. Rétvári, Batchy: Batch-scheduling
Data Flow Graphs with Service-level Objectives, in: 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), USENIX Association, Santa Clara, CA, 2020, pp. 633–649.
URL https://www.usenix.org/conference/nsdi20/presentation/levai

[33] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming:
theory and algorithms, John Wiley & Sons, 2013.

[34] O. N. Foundation, Open Mobile Evolved Core, https:
//opennetworking.org/omec/ (2024).

[35] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, Dynamic behavior
of slowly-responsive congestion control algorithms, ACM SIGCOMM
Computer Communication Review 31 (4) (2001) 263–274.

[36] M. Dobrescu, K. Argyraki, S. Ratnasamy, Toward Predictable
Performance in Software Packet-Processing Platforms, in: 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), USENIX Association, San Jose, CA, 2012, pp. 141–154.
URL https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/dobrescu

[37] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,
S. Shenker, ResQ: Enabling SLOs in Network Function Virtualization,
in: USENIX NSDI, 2018, pp. 283–297.

[38] Z. Su, T. Begin, B. Baynat, Towards including batch services in models
for DPDK-based virtual switches, in: GIIS, 2017, pp. 37–44.

[39] S. Lange, L. Linguaglossa, S. Geissler, D. Rossi, T. Zinner, Discrete-
Time Modeling of NFV Accelerators that Exploit Batched Processing,
in: IEEE INFOCOM, 2019, pp. 64–72.

[40] Y. Li, L. T. Xuan Phan, B. T. Loo, Network functions virtualization with
soft real-time guarantees, in: IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications, 2016, pp.
1–9.

[41] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman & Co., USA, 1979.

Tamás Lévai received the MSc in Computer Engi-
neering at the Budapest University of Technology
and Economics (BME) in 2016. He received his PhD
degree in Informatics in 2022 at BME. Currently, he
is an Assistant Lecturer at BME, and a Research Fel-
low at HUN-REN TKI. His research interest focuses
on computer networks and distributed computing,
mainly software-defined networking, cloud native
computing and real-time communications.

Balázs Vass received his MSc degree in applied
mathematics at ELTE, Budapest in 2016. He finished
his PhD in informatics in 2022 on the Budapest
University of Technology and Economics (BME). His
research interests include networking, survivability,
combinatorial optimization, and graph theory. He
was an invited speaker of COST RECODIS Training
School on Design of Disaster-resilient Communica-
tion Networks ’19. He is a TPC member of IEEE
INFOCOM ’23, ’24, and ’25.

Gábor Rétvári received the M.Sc. and Ph.D. degrees
in electrical engineering from the Budapest University
of Technology and Economics in 1999 and 2007,
where he is now a Senior Research Fellow. His
research interests include all aspects of network
routing and switching, the programmable data plane,
and the networking aspects of cloud native computing.
He is a co-founder and CTO of L7mp Technologies, a
company specializing in running large-scale WebRTC
services over Kubernetes.

APPENDIX

A. Proof of Lemma 1

Proof: We start with the notations of the stride scheduling
paper [27], with time quantum and stride scaled to: quanta =
1, stride1 = 1. We will turn to our notations meanwhile,
with: tickets(t) = wt, quanta(t) = θt. By definition, for
any task t ∈ Si, Pass(t) = #scheduled(t) · stride(t) ·
quanta(t)
quanta = #scheduled(t) · stride1

tickets(t) · quanta(t)
quanta =

#scheduled(t) · θt
wt

(Eq. Pass). Also, after a long time
Pass(t)
Pass(t′) → 1, for any t′ ∈ Si (Eq. infty). Furthermore, the
timeshare a task t ∈ Si gets (on server i) is:

#scheduled(t) · quanta(t)quanta∑
t′∈Si

#scheduled(t′) · quanta(t
′)

quanta

=

=
#scheduled(t) · θt∑

t′∈Si
#scheduled(t′) · θt′

Eq. Pass
=

=
Pass(t) · wt∑

t′∈Si
Pass(t′) · wt′

Eq. infty→ wt∑
t′ wt′

=
wt

1
= wt.

Based on this, the time needed to accumulate the amount of
time for task t to run once is θt

wt
.

B. Proof of Claim 1

Proof: Suppose indirectly that there is no optimal solution
where the task weights on each worker add up to 1. Take an
optimal solution w of (14). For each worker i, assign new
weights for the tasks of i: w′

t := wt/
∑

t∈Si
wt, for all t ∈ Si.

Observe that the new task weights add up to 1 on each worker.
Also, weights w′

t are strictly greater than the old weights wt,
thus the objective function value either decreases or stays the
same, since: (∆w)t = −∂L(w)

∂wt
= α

∑
f∈Ft:df>Df

θtQ
Tit

1
w2

t
+

λt ≥ 0. The former two observations yield a contradiction.

C. Proof of Lemma 2

To prove this Lemma, we need the following Claim:

Claim 3. Given a worker, suppose every task of the worker has
a strictly positive cost. Then, given any wt ≥ 0 s.t.

∑
t wt = 1,

the new weight vector w′
t yielded by Rosen’s method (like Alg.

1) is strictly positive (i.e., w′
t > 0 s.t.

∑
t w

′
t = 1).

http://www.waldspurger.org/carl/papers/stride-mit-tm528.pdf
http://www.waldspurger.org/carl/papers/stride-mit-tm528.pdf
http://www.waldspurger.org/carl/papers/stride-mit-tm528.pdf
https://doi.org/10.1145/3542929.3563471
https://doi.org/10.1145/3542929.3563471
https://doi.org/10.1145/3542929.3563471
https://doi.org/10.36244/ICJ.2022.1.6
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
https://opennetworking.org/omec/
https://opennetworking.org/omec/
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu

13

Algorithm 3: Rosen’s Projected Gradient Method
Input: A, b,Q, q, f , and x1 s.t. Ax1 ≤ b,Qx1 = q
Find: argmin{f(x)|Ax ≤ b,Qx = q}

1 k := 1
2 Divide A and b into A1, A2 and b1, b2, resp.; s.t.: A1xk = b1,

A2xk < b2
3 // 1 -main loop

4 M :=

[
A1

Q

]
5 if M is vacuous then

if ∇f(xk) = 0 then
return xk

else
dk := −∇f(xk)
GOTO 2

else
P := I −M t(MM t)−1M

6 dk := −P∇f(xk)
if dk ̸= 0 then

GOTO 2
else

7 z :=

[
u
v

]
:= −(MM t)−1M · ∇f(xk)

8 if u ≥ 0 then
return xk (KKT point) and z (associated

Lagrange multipliers)
else

let j be an index s.t.: uj < 0; delete j th row of
A1

9 GOTO 1
// 2 -line search
if dk ≤ 0 then

λmax := ∞
else

b̂ := b2 −A2xk; d̂ := A2dk
10 λmax := min{b̂i/d̂i : d̂i > 0}

λk := argmin{f(xk + λ · dk)|λ ∈ [0, λmax]}
11 xk+1 := xk + λkdk
12 Divide A and b into A1, A2 and b1, b2, resp., s.t.: A1xk = b1,

A2xk < b2
13 k := k + 1; GOTO 1

Proof: The penalty function has to be defined to be +∞,
if a task with positive cost has zero weight (the delays of the
flows through it are infinite, thus, they would be present in the
new penalty function too). Suppose for a task t that wt ↘ 0
(meaning the delays of the flows going through t are exceeding
their delay SLO a lot). Then, 1/wt → +∞, thus (14) tends to
infinity.

Proof of Lemma 2: The convergent version of Rosen’s
conjugate gradient method is summarized in Alg. 3. First, we
note that by [33, Thm. 10.5.7.], in each iteration, Alg. 3 indeed
generates an improving direction, or terminates in a KKT point.
Next, we prove that Alg. 1, being a slight variant of Alg. 3, also
generates an improving direction, or terminates in a KKT point.
In our case, we have the following. A = −I, b = 0, Q = 1, q =
1, original x1 equaling w[1] = [1/|Si|, . . . , 1/|Si|], f(x) = L(x).
Q not being vacuous means that we never enter the ‘then’
branch of the if statement of Alg. 3 line 5, simplifying our
algorithm. We can see that by Claim 3, A1 is vacuous in our
case. Thus, M = Q = 1, yielding P = (I − 1

|Si|1). Suppose
now that d[k] = 0. In line 7, vector u has dimension 0, because
it is associated with matrix A1 that is vacuous in our case. Thus,
our algorithm never enters the else branch of the if statement
in Alg. 3 line 8. We also do not need vector z (the Lagrange

multipliers) calculated in line 7. Turning now to the second
part of Alg. 3, one can check that the initializations and the
first run of the while cycle of Alg. 2 indeed correspond to the
line search of 3, with a slight modification of preventing task
weights getting mistakenly too close to 0, that may happen
because we do not recalculate the λt and θt values while
performing the line search. Subsequent runs of the while cycle
ensure that our control algorithm does not get stuck with minor
steps by enabling to search for better solutions along the re-
projected gradient, where blocked tasks were excluded. We
note that because of locally simplifying the objective function
(via not recalculating the λt and θt) during the search, the
resulting solution w[k + 1] after an iteration may end up with
a higher objective function value than w[k].

Lastly, we turn to the complexity of an iteration of Alg 1.
In Line 3, determining the gradient takes O(|Si| · |Fi|) time.
Determining d[k] in Line 4 takes O(|Si|) since the specific
structure of the matrix. Aside from the steps of Alg. 2, the
remaining operations fit in this complexity. Turning to Alg. 2,
we can see that the complexity of lines 1-3 is O(si). Further,
the steps in the while loop are repeated at most |Si| times,
since the only way a new iteration of the loop is started is
when at least one task gets blocked - and there are |Si| tasks.
Line 8 takes O(ns · |Si| · |Fi|), all the other tasks within an
iteration of the cycle take O(Si). We can conclude that an
iteration of Alg. 1 takes O

(
|Si|2|Fi| · ns

)
time.

D. Proof of Claim 2

Proof: We will show that the NP-hard PARTITION
problem [41, SP12] is a special case of our problem. The
PARTITION problem goes as follows. Given a set A of
positive integers, can A be partitioned in sets A1 and A2

such that the elements of the partitions are equal?
We take an instance of the PARTITION problem with A =

{a1, a2, . . . , a|A|}. Let A :=
∑

ai∈A ai. We take a number of
|A| modules v1, . . . , v|A|, needing a1, . . . , a|A| (times constant)
CPU cycles to process a single packet. We have a set of
tasks t1, . . . , t|A|. The ith module is contained by task ti, and
each task contains exactly one module. The dataflow graph
is a simple path v1, v2, . . . , v|A|, and there is a single flow f
traversing it. The flow has infinite delay SLO, while its rate
SLO is 2/A. There are two workers, each with unit time budget.
Task ti has an associated weight wti . We note that, in this
simple setting, for each task, θti = τti,f = ai.

Without going into details, we can see, that, according to
the system model (16)–(20) (and also intuitively), the rate of
f will be mini∈{1,...,|A|}

wti

ai
. This means, that for all task ti,

wti ≥ 2ai

A is needed to reach the rate SLO. This also ímeans
wti =

2ai

A for all task ti, since if indirectly, there was a task
with strictly larger weight than the right hand side, the weights
would add up to more than 2, that is a contradiction.

In addition, since the task weights on each worker may add
up to ≤ 1, to reach the rate SLO, there must be a partition I1, I2
of the indexes 1, . . . , |A| such that

∑
i∈I1

wti =
∑

i∈I2
wti =

1. That is,
∑

i∈I1
2ai

A = 1, or equivalently,
∑

i∈I1
ai = A

2 .
Deciding whether such a partition exists is equivalent to solving
the PARTITION problem. The proof follows.

	Introduction
	Background, Challenges and System Model
	Dataflow Graphs and Scheduling
	System Model
	Problem Statement

	An Optimal Scheduling Algorithm
	Assumptions
	Delay Estimation
	Rate Estimation
	Feasible WFQ Scheduling Control with Fixed Resource Allocation

	A Practical Real-time Scheduler
	A Simplified Model
	A Model-predictive Scheduler Controller
	Dynamic Resource Allocation

	Simulator
	Evaluation
	Validating the Delay Estimate
	Control Algorithm
	Dynamic Resource Allocation

	Related Work
	Conclusions
	References
	Biographies
	Tamás Lévai
	Balázs Vass
	Gábor Rétvári

	Appendix
	Appendices
	Proof of Lemma 1
	Proof of Claim 1
	Proof of Lemma 2
	Proof of Claim 2

