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Quality of Service enhancement with Resilient routing and

Machine learning

@ QoS enchancement = (in our case) increasing the availability
(uptime) of a network

@ with Resilient Routing

@ and Machine learning
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Reactive vs Proactive approaches
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Resilient routing: A simple example

@ Very important packet from A to D...

0.3/2 Mbps

Figure 1: Possible routes in a network
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Resilient routing: A simple example

@ Very important packet from A to D...

0.3/2 Mbps

Figure 2: Possible routes in a network

@ Send it on a backup route too!
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The problem

Which backup route will have the required capacity?

o ldea: predict the free capacity for each edge — in a short
time-distance.

Collecting Traffic Broadcasting protection plan for (¢ + 1)
information (t)
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Figure 3: Quality of Service enchancement framework
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Energy Sciences Network — ESNet

@ ~ 141 links

o Bandwidth usage data, 30sec resolution

@ A previous study: Mogyorési et al.l

Figure 4: ESNet 2

"Mogyorési et al.: Adaptive Protection of Scientific Backbone Networks Using
Machine Learning (IEEE TNSM)[1]
%source: https://my.es.net/
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Energy Sciences Network — ESNet

@ 3 months examined: 2024-08-01 — 2024-11-30
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Figure 5: Total bandwidth usage *

'source: https://my.es.net/
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Energy Sciences Network — ESNet
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Figure 6: Example: LASV-LOSA 2024-08-01 00:00:00-01:00:00 *

'source: https://my.es.net/
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Used prediction methods

o ARIMA — Autoregressive Integrated Moving Average

o less resource-intensive
o "explainable"

@ TCN — Temporal Convolutional Networks
e may work better on difficult cases
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ARIMA — Autoregressive Integrated Moving Average

P q
Xt.{ =c+ Z (b,‘XlL,- + Z Oier—i + €
i=1 i=1

X{ — state of the (d-th order differenced) time series at time t
¢ — "drift" / "trend"
@i — autoregressive term (p of them)

0; — moving average term (g of them)
¢ — "white noise" / "random walk" / N(0,1)

o d - order of differencing 2

%source: Forecasting: principles and practice [2]
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ARIMA — Autoregressive Integrated Moving Average

@ Determining the optimal ¢, 8: using Maximum Likelihood Estimation
for previous N values

@ Recalculate for every time-step t

@ Determining the optimal p, d, g: by trial and error...
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TCN — Temporal Convolutional Networks
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Figure 7: The TCN architecture 3

@ Causal convolutions: enforced via right-shifts in subsequent layers

@ Residual connections: a highway for gradients

3Bai et al.: An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling[3]
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— Temporal Convolutional Networks

Figure 8: The data distribution is ~log-normal on most links, when 0-values are
removed.
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TCN — Temporal Convolutional Networks
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Figure 9: Normalization is crucial: normalize using a running mean and variance.
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TCN — Temporal Convolutional Networks

e Train (and validate) on the first 85% of the data

@ Test on the rest

@ Possible TCN hyperparameters: number of layers, kernel size, number
of channels, size of lookback window, dropout rate, etc.
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avorable cases
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Figure 10: Unfavorable case. Note the sudden increase in variance after
t=25x10°
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Evaluation results
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Figure 11: Model performance evaluation on a per-link basis, with a forecast
distance of 2 units.
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Evaluation results
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Figure 12: Model performance compared to the baseline on a per-link basis, with
a forecast distance of 2 units.
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Evaluation results
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Figure 13: Average of per-link relative model losses vs absolute runtimes
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Future directions

@ Conclusions:
o TCNs work better than ARIMAs in most cases
e Normalization is crucial for TCN performance
e Prediction for shorter intervals is (of course) easier

o Future directions:
o Collect more data.
o Using multiple input channels with different running window-based
transformations (normalizations) of the same data
o Devise a full adaptive protection scheme
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https://gitlab.com/dobaipatakyattila/qoserm-tsa

Thank you for Your attention!
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