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ABSTRACT
Safest path computation with multiple correlated failures is a chal-

lenging computational task, with several application possibilities.

In communication backbone networks, for example, establishing a

path as safe as possible between the two communication endpoints

is a crucial component for achieving the ambitious availability

requirements on which emerging technologies like autonomous

driving, AR/VR applications, or telesurgery depend. In this paper,

after proving the NP-hardness of the problem, we propose the

Safest Path Ant Colony Optimization (SP-ACO) algorithm to solve

the problem. The proposed algorithm is based on the Max-Min Ant

System. Numerical experiments conducted on both real-world and

synthetic inputs prove the effectiveness of the proposed approach.

The proposed SP-ACO algorithm typically provides at least as safe

paths as the state-of-the-art algorithms, even outperforming them

in a significant share of the parameter settings. This grants a place

for the SP-ACO among the best solutions for safest path finding in

the presence of correlated failures.
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1 INTRODUCTION
Studying computational network problems gained huge interest

in recent decades due to their large application possibilities, for

example, the community detection problem in E-Commerce [1] or

link prediction in network completion problems [2]. A concrete,
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well-studied problem is to find a shortest path between two nodes

𝑠 and 𝑡 of a graph 𝐺 . If the aim is to compute an 𝑠𝑡-path using the

least edges possible, a simple Breadth-First Search (BFS) can be used.

For non-negative edge weights, Dijkstra’s algorithm [3] is the best

solution, while for arbitrary weights, a Bellman-Ford [4] suits well.

The task of finding a safest 𝑠𝑡-path in some simple settings proves to

be solvable by using a shortest path finding subroutine, after some

transformations [5]. However, the case when the failures of the

network elements are correlated is not well understood yet. Thus,

the primary goal of this study is to assemble a performant safest

path finding algorithm in the presence of correlated failures. While

our real-world numerical problem inputs are on communication

backbone networks paired with seismic hazard data, we believe the

algorithm designed in this paper can be efficiently used on a wide

range of problem inputs.

1.1 Safest paths in backbone networks
Computing safest paths and evaluating availability between two

network nodes assuming independent single-element failures has

a long history, see e.g., former studies focusing on the protection

of communication backbone networks [6–11]. Remaining at the

concrete use-case of communication networks, dealing with mul-

tiple failures has its traditions, relying on the concept of Shared

Risk Groups (SRGs) (e.g.,[6–9, 12, 13]). An SRG consists of a few

network elements that are considered to have a high chance of

failing together (e.g., links traversing the same bridge). In many

of the applications, the failure of a network node 𝑣 has the same

effect as the failure of all the links incident to 𝑣 . In these cases, it

is enough to deal with a list of Shared Risk Link Groups (SRLGs),

each SRLG consisting only of links.

Probabilistic extensions of SRLGs were also investigated [14–18].

Lately, [18] proposed a straightforward unified terminology related

to the Probabilistic SRLGs (PSRLGs) that will be adopted by this

paper.

A natural approach (also taken by this paper) is to take the disas-

ter scenarios as input [19], that have been carefully precomputed by

dedicated approaches, e.g., based on historical hazard data. Much of

the work in this field tackled disaster modeling more heuristically

in their own way to address their given problem in network plan-

ning. Some examples are determining the most vulnerable network

part [20–23], estimating the damage in the network if a random dis-

aster hits [24–26], (re)routing connections in order to minimize the

impact of disasters [27, 28], and resiliency-aware network design

and extension [29–32].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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By now, efficient methods for computing and storing the cor-

related link failures are available [18] (instead of limiting the set

of disasters to a small number, or assuming the independence of

link failures [33–35]). These methods are already in use in complex

frameworks for disaster resilience [36, 37].

From an algorithmic point of view, several variants of the prob-

lem, and different solution concepts were proposed. In [38], two

correlated link weight models are proposed (link weights can have

different meanings, e.g., delay, failure probability), and the shortest

path problem is studied on these models based on the Dijkstra algo-

rithm. [39] presents some characterization of correlated failures and

the k-shortest path problem is solved. In [40] single and double link

failures are studied and an Integer Quadratic Programming problem

is formulated. Generally, considering link correlations in shortest-

path algorithms can significantly impact network reliability and

performance.

1.2 Nature-inspired algorithms for safest path
computation

Nature-inspired algorithms [41] are powerful optimization tools

for solving hard optimization problems. Regarding variants of the

safest route problem and nature-inspired solving methods, in [42], a

multi-objective genetic algorithm is proposed for evacuation route

planning, considering three objective functions: evacuation dis-

tance, evacuation time, and the safety of the evacuation route.

Considering the variant of the safest path problem studied in this

article - to the best of our knowledge - nature-inspired algorithms

were not studied. The use of Ant colony optimization algorithms

in this kind of graph-based combinatorial optimization problem

is straightforward. Current literature studied simple variants of

shortest path problems, in [43] a running time analysis of different

ACO systems is presented for the base shortest paths problem. In

[44] anACO algorithm is presented to solve the bi-objective shortest

path problem. The authors of [45] study a stochastic shortest path

problem with ACOs, where the weights of edges are subject to

noise (meaning delays or uncertainty). The article [46] presents

an ant colony system algorithm for finding the shortest path with

preferred edges.

1.3 Main contributions
The main contributions of the paper are as follows:

• We formalize and prove the NP-hardness of the problem of

finding a safest path in presence of correlated failures.

• The Ant Colony Optimization algorithm (ACO) is adopted

for solving the problem.

• Through extensive simulations, we show that the resulting

Safest Path ACO (SP-ACO) algorithm is typically at least

on par with the state-of-the-art algorithms, in a significant

share of the simulation settings yielding safer paths than

former algorithms.

The rest of the paper is structured as follows: Sec. 2 formally

defines the problem, and presents some basic results, including

the NP-hardness. Sec. 3 describes the proposed Ant Colony Opti-

mization algorithm. Numerical evaluations on both real-world and

synthetic inputs are presented in Sec. 4. Finally, Sec. 5 concludes

the paper and discusses future research directions.

2 PROBLEM STATEMENT AND PROOF OF
NP-HARDNESS

The problem input consists of two main parts. One is a connected

graph 𝐺 = (𝑉 , 𝐸), along with a communication source-target node

pair {𝑠, 𝑡} ⊆ 𝑉 . The other part of the problem input encodes the

probabilities of joint failures link sets. For this, for a link set 𝑆 ⊆ 𝐸,

in line with [18, 37], we define CFP(𝑆) (that stands for ‘cumulative

failure probability of 𝑆 ’) to denote the probability that at least link
set 𝑆 will fail at the next disaster. The second part of the input is

CFP[𝐺], which is a data structure containing all the CFP(𝑆) values,

where we list CFP(𝑆) only if CFP(𝑆) > 0. Note that in most of the

natural settings, CFP[𝐺] has a manageable size [18]. We note that

albeit CFP[𝐺] stores only link failures, it is suitable for implicitly

storing node failure probabilities, too; see [18, Sec. V.]. The goal is

to find a safest path among a node pair 𝑠 and 𝑡 , i.e., an 𝑠𝑡-path with

lowest chance that any of its links fails under the next disaster.

Below, we give a more formal definition of the above concept,

followed by a proof of NP-hardness of the decision version of the

safest path problem. CFPs can be defined as follows.

Definition 2.1 (Cumulative Failure Probability (CFP)). Given
a set of links 𝑆 ⊆ 𝐸, the cumulative failure probability (CFP) of 𝑆 ,

denoted by CFP(𝑆), is the probability that all links 𝑆 fail simultane-

ously (and possibly other links too).

It is easy to see that if for a link set 𝑆 , CFP(𝑆) > 0, then all the

2
|𝑆 | − 1 non-empty subsets of 𝑆 have to be stored in CFP[𝐺]. Intu-

itively, when there are only a couple of failure scenarios, which, on

the other hand, cause the destruction of many network elements,

there should be a more compact way of storing the network failure

hazard. The straightforward and provably more compact represen-

tation is the so-called Link Failure State Probability [18], that we

mention in our paper, too:

Definition 2.2 (Link Failure State Probability (FP)). Given a set
of links 𝑆 ⊆ 𝐸, the link failure state probability (FP) of 𝑆 , denoted by

FP(𝑆), is the probability that exactly the links of 𝑆 fail simultaneously

(and no other links).

Whenever it does not cause confusion, we will refer as ‘CFP’

to both 1) the tuple (𝑆,CFP(𝑆)) for a link set 𝑆 , and 2) simply, to

CFP(𝑆). The same goes for ‘FP’. Intuitively, FP[𝐺] and CFP[𝐺] are
interconnected in a similar way as the density and cumulative

density functions.

Next, we define two interconnected versions of the safest path

finding problem with correlated link failures:

Problem 1: Safest Path CFP Problem - decision version

Input: A graph 𝐺 = (𝑉 , 𝐸), nodes 𝑠 and 𝑡 , a threshold 𝑇 , and
failure probabilities CFP[𝐺].
Question: Decide whether there exists an 𝑠𝑡-path that, after

the next disaster, remains intact with a probability of at

least 𝑇 . If such a path exists, the instance is satisfiable.

As we will see in Thm. 2.4, the above problems are NP-hard.

Note that the NP-hardness of the decision versions indicate the

NP-hardness of the optimization versions of Problems 1 and 2. That

is, it isNP-hard to find a safest 𝑠𝑡-path if link failures are correlated.
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Problem 2: Safest Path FP Problem - decision version

Input: A graph 𝐺 = (𝑉 , 𝐸), nodes 𝑠 and 𝑡 , a threshold 𝑇 , and
failure probabilities FP[𝐺].
Question: Decide whether there exists an 𝑠𝑡-path that, after

the next disaster, remains intact with a probability of at

least 𝑇 . If such a path exists, the instance is satisfiable.

𝑒

𝑔

𝑗

𝑓

𝑙
𝑘

ℎ 𝑖
𝑠 𝑡

FP[𝐺 ] :
FP(𝑒) =0.2 FP(𝑓 ) =0.2

FP(𝑔) =0.2 FP(𝑔,ℎ, 𝑖) =0.1

FP(𝑗, 𝑙 ) =0.25

CFP[𝐺 ] :
CFP(𝑒) =0.2 CFP(𝑓 ) =0.2

CFP(𝑔) =0.3 CFP(ℎ) =0.1 CFP(𝑖) =0.1

CFP(𝑔,ℎ) =0.1 CFP(ℎ, 𝑖) =0.1 CFP(𝑔, 𝑖) =0.1 CFP(𝑔,ℎ, 𝑖) =0.1

CFP(𝑗 ) =0.25 CFP(𝑙 ) =0.25 CFP(𝑗, 𝑙 ) =0.25

Method

Path

yielded

Availability

perceived by method

Real

availability

Indep. E.d. SP-ACO

Independent {𝑒, 𝑓 } 0.64 0.6 0.6 0.6

Edge-dual [5] {𝑔,ℎ, 𝑖 } 0.567 0.7 0.7 0.7

SP-ACO (Ours) { 𝑗, 𝑘, 𝑙 } 0.5625 0.5 0.75 0.75

Figure 1: A toy example on the input graph𝐺 , related failure proba-
bilities stored in either FP[𝐺 ] or CFP[𝐺 ]. The table included depicts
the supposedly safest paths yielded by different methods in this
example, along with the availability perceived by the methods and
the real availability of the path. Note that, in reality, availabilities
are much closer to 1, thus the mistakes made by Independent and
Edge-Dual methods are less obvious.

Note that while wewill mainly workwith the less compact structure

of CFP[𝐺], the NP-hardness of Problem 2 hints that the hardness

does not arise because of an unfortunate phrasing of the input.

Example 2.3. Fig. 1 depicts a simple example of the problem

inputs, along with the results of some of the (heuristic) optimization

algorithms for finding a safest 𝑠𝑡-path (that will be briefly presented

in the following).

Note that despite the inherent hardness of our optimization prob-
lem (to be proved in Thm. 2.4), known the graph 𝐺 , and the list

FP[𝐺] of link sets of positive FP, there is a straightforward way to

evaluate the real availability of 𝐴(𝑃) a given 𝑠𝑡-path 𝑃 , formalized

in Alg. 1. Intuitively, a path 𝑃 fails if a failure event cuts at least one

link on the path:

𝐴(𝑃) = 1 −
∑︁

𝑆∩𝑃≠∅
FP(𝑆). (1)

Note that it is not a problem that Alg. 1 possibly neglects some

link sets 𝑆 having a nonempty intersection with path 𝑃 , that are

not in FP[𝐺], since their cumulative failure probability is zero by

definition.

Algorithm 1: Computing the availability of a path 𝑃

Input: Path 𝑃 = {𝑒1, . . . , 𝑒𝑘 } in graph𝐺 = (𝑉 , 𝐸 ) , failure
probabilities FP[𝐺 ]

Output: Availability 𝐴(𝑃 ) of path 𝑃

1 𝐴 := 1

for 𝑆 ∈ FP[𝐺 ] do
if 𝑆 ∩ 𝑃 ≠ ∅ then

𝐴 := 𝐴 − FP(𝑆)

return 𝐴

Unfortunately, it is not obvious how FP[𝐺] should be used for

optimizing the availability of an 𝑠𝑡-connection. In fact, both ex-

isting optimization methods (the Independent and the Edge-dual,

briefly introduced in the following) and our SP-ACO algorithm take

advantage of the cumulative failure probabilities CFP[𝐺], which
are possibly much more numerous than FP[𝐺]. As a prelude to the

optimization methods, we note that the true availability of a path 𝑃

can also be expressed via the CFPs, as follows. By iterating through

the link sets in CFP[𝐺], and counting their CFP with the right sign,

the following sum is calculated:

𝐴(𝑃) =
∑︁
𝑆⊆𝑃

(−1) |𝑆 |CFP(𝑆). (2)

Note that by the inclusion-exclusion principle, this sum correctly

assesses the availability.

Returning to Fig. 1, we can see that the three methods return

with three different paths. This is because of the following. The

traditionally used Independent method maximizes the product of

the availabilities of the links:

𝐴
indep

(𝑃𝑠𝑡 ) = Π𝑒∈𝑃 (1 − CFP(𝑒)) (3)

This way, it assumes the best solution is to go from 𝑠 to 𝑡 along

links 𝑒 and 𝑓 . This simulation turns out to be suboptimal since, in

the example, the link failures are correlated. We note that using a

well-known arithmetic trick, the optimization here can be done by

a simple Dijkstra algorithm [5].

Taking advantage of some graph transformations, the Edge-
dual heuristic of [5] takes into account only those CFPs that are

connected and have a diameter at most two. Thus, for a path

𝑃 = {𝑒1, . . . , 𝑒𝑖 }, it maximizes the following expression:

𝐴
edge-dual

(𝑃) = 1 −
𝑖∑︁
𝑗=1

CFP({𝑒 𝑗 }) +
𝑖−1∑︁
𝑗=1

CFP({𝑒 𝑗 , 𝑒 𝑗+1}) (4)

In the example of Fig. 1, the edge-dual method fails to find an

optimal solution since it underestimates the availability of path

{ 𝑗, 𝑘, 𝑙} by neglecting CFP( 𝑗, 𝑙).

Contrary to the above heuristics, the SP-ACO introduced in this

paper finds the optimal solution.

For clarity, we explicitly express here that Eq. (1) and Eq. (2)

(used by our algorithm SP-ACO) define correct assessments of the

availability of a given path 𝑃 ; however, Eq. (3) and Eq. (4) are just

useful, easily optimizable formulations that help the Independent

and Edge-dual methods guess the best solutions.
Now we turn to prove the NP-hardness of the problem at hand.

Intuitively, the main idea of the proof is to transform a 3-SAT prob-

lem instance 𝑓 to a safest path problem instance in which there is
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𝑆𝑥1 𝑆¬𝑥1

𝑆𝑥2 𝑆¬𝑥2

𝑆𝑥3 𝑆¬𝑥3

(a) Link sets with posi-
tive faliure probability.

ClausesClauses LiteralsLiterals

¬𝑥3

𝑥2

𝑥1

¬𝑥2

𝑥2

¬𝑥1

¬𝑥1

𝑥1

𝑥1

¬𝑥2

𝑥2

𝑥2

¬𝑥3

𝑥3

𝑥3
00

01

02

10

11

12

20

21

22

30

31

32

40

41

42

50

51

52

𝑠 𝑡

Clause 1 Clause 2 Literal 1 Literal 2 Literal 3

(b) Graph𝐺 created based on 3-SAT instance 𝑓

Figure 2: Example of a reduction from a 3-SAT instance 𝑓 = (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥2). The instance has 𝑘 = 2 clauses and
𝜌 = 3 literals. There are 2𝜌 link sets 𝑆 in FP[𝐺] / CFP[𝐺], each with FP(𝑆) = CFP(𝑆) = 1/2𝜌. Since the ‘right side’ of the graph, at
least 1 out of the 2 link sets related to each literal has to be traversed by each 𝑠𝑡-path 𝑃 , thus, 𝐴(𝑃) ≤ 1/2. Because of the ‘left side’
of the graph, 𝐴(𝑃) = 1/2 is achievable exactly if 3-SAT instance 𝑓 is satisfiable.

an 𝑠𝑡-path with availability reaching 1/2 if and only if 𝑓 is satisfiable,
that is NP-hard to decide.

Theorem 2.4. Problems Safest Path FP and Safest Path CFP
(Problems 2 and 1) are NP-hard.

Proof. First, we will provide a polynomial-time reduction from

the NP-complete 3-SAT problem [47] to (the decision variant of)

the Safest Path FP problem. The NP-hardness of Safest Path
CFP will be proved via an extra observation at the end of this proof.

Suppose we are given a 3-SAT problem instance 𝑓 , that is a

conjunctive normal form, standing of clauses containing exactly

three literals each. That is, 𝑓 = 𝐶1 ∧ 𝐶2 ∧ · · · ∧ 𝐶𝑘 , with each 𝐶𝑖
(𝑖 ∈ {1, . . . , 𝑘}) equalling (𝑙𝑖,1 ∨ 𝑙𝑖,2 ∨ 𝑙𝑖,3). The 3-SAT problem is to

determine whether 𝑓 is satisfiable. In the following, we construct

a Safest Path FP problem instance that is satisfiable exactly if 𝑓

is satisfiable and has an input of size 𝑂 (𝑘) that can be computed

from 𝑓 in 𝑂 (𝑘).
Going into details, known formula 𝑓 that has 𝑘 clauses, and 𝜌

variables, we define graph 𝐺 = (𝑉 , 𝐸) as follows. Let the set of

nodes be

𝑉 := {𝑣𝑖, 𝑗 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, 𝑘 + 𝜌 + 1}} ∪ {𝑠, 𝑡}.
The set of edges is

𝐸 := {{𝑣1, 𝑗 , 𝑣2, 𝑗 }, {𝑣2, 𝑗 , 𝑣3, 𝑗 } 𝑗 ∈ {1, 𝑘 + 𝜌 + 1}}∪

∪{{𝑣𝑖, 𝑗 , 𝑣𝑖, 𝑗+1} | 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, . . . , 𝑘 + 𝜌}} ∪ {{𝑠, 𝑣1,1},
{𝑠, 𝑣2,1}, {𝑠, 𝑣3,1}, {𝑣1,𝑘+𝜌+1, 𝑡}, {𝑣2,𝑘+𝜌+1, 𝑡}, {𝑣3,𝑘+𝜌+1, 𝑡}}.

Intuitively,𝐺 can be drawn as a 3× (𝑘 +𝜌) grid graph, with 𝑠 and
𝑡 appended to the nodes on the first and last columns, as depicted

in Fig. 2. Remaining at this example drawing of 𝐺 , intuitively, the

links that may fail at the next disaster are exactly the horizontal

ones, as explained in the following.

Each link set 𝑆 that has a positive failure probability (FP(𝑆) > 0)

is set to have a failure probability FP(𝑆) = 1

2𝜌 . For each variable

𝑥𝜎 (𝜎 ∈ {1, . . . , 𝜌}), we define two such link sets (this makes a

total of 2𝜌 link sets of positive failure probability; thus the failure

probabilities add up to 1 as expected). The first set, 𝑆𝜎 contains

each link {𝑣𝑏,𝜎 , 𝑣𝑏,𝜎+1} (𝑏 ∈ {1, 2, 3}, 𝜎 ∈ {1, . . . , 𝜌}) for which, in

the 𝜎 th clause, the 𝑏th literal is 𝑥𝜎 (as a positive literal); and, in

addition, 𝑆𝜎 contains link {𝑣
1,𝑘+𝜎 , 𝑣1,𝑘+𝜎+1}. The second link set

associated to 𝑥𝜎 , denoted by 𝑆¬𝜎 , contains each link {𝑣𝑏,𝜎 , 𝑣𝑏,𝜎+1}
(𝑏 ∈ {1, 2, 3}, 𝜎 ∈ {1, . . . , 𝜌}) for which in the 𝜎 th clause the 𝑏th

literal is ¬𝑥𝜎 (as a negative literal); and, in addition, 𝑆¬𝜎 contains

links {𝑣
2,𝑘+𝜎 , 𝑣2,𝑘+𝜎+1} and {𝑣

3,𝑘+𝜎 , 𝑣3,𝑘+𝜎+1} (see Fig. 2).
The probability threshold 𝑇 is set to

1

2
. Since any 𝑠𝑡-path 𝑃 has

to pass at least one of links {𝑣𝑖,𝑘+𝜎 , 𝑣𝑖,𝑘+𝜎+1}, 𝑖 ∈ {1, 2, 3}, it has to
intersect either 𝑆𝜎 or 𝑆¬𝜎 . Thus, the survival probability of path 𝑃

cannot be higher than
1

2
. Further, we can observe that the availabil-

ity of 𝑃 can be (at least)
1

2
precisely if the 3-SAT problem instance

𝑓 is satisfiable. This proves the NP-hardness of the Safest Path
FP problem (Problem 2).

In the construction presented above, for each 𝑆 , FP(𝑆) = CFP(𝑆),

thus the same construction is also a proof of the NP-hardness of

problem Safest Path CFP (Problem 1). □

We note that the above proof of NP-hardness resembles a re-

duction scheme that, in different versions, can be found in various

places, like the proof of hardness in [48].

3 PROPOSED ALGORITHM: THE SAFEST
PATH - ANT COLONY OPTIMIZATION
ALGORITHM (SP-ACO)

Our proposed algorithm for computing safest paths in presence

of correlated failures is based on the Ant Colony Optimization

(ACO) algorithm [49], more precisely, its Min-Max Ant System

variant. ACO is a nature-inspired algorithm that is based on the

communication techniques employed by ant colonies. Individual

ants communicate through the use of pheromone trails in a form

of indirect communication.

The ACO algorithm is governed by the following settings: heuris-

tic information, pheromone setting, and solution generation.

As heuristic information, our algorithm uses the negative loga-

rithm of the probability that the given edge breaks (ignoring proba-

bilities that group multiple edges together). In case an edge does

not have an associated probability, it is given a very small 𝜖
prob

> 0

probability of breaking, since logarithms cannot work with zeros.
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This 𝜖 has to be significantly lower than other failure probabilities

in the original list of failure probabilities CFP[𝐺]. For our tests,
we used 𝜖

prob
= 10

−8
. In case two nodes are not neighbors, the

heuristic information will be set to 0 in order to prevent ants from

choosing them. This is described in Eq. (5), where N𝑖 is the set of

neighbors of 𝑖 and 𝑒𝑖, 𝑗 is the edge between nodes 𝑖 and 𝑗 .

𝜂𝑖 𝑗 =

{
− log CFP({𝑒𝑖, 𝑗 }), if 𝑗 ∈ N𝑖

0, else.
(5)

The pheromone setting is mostly governed by the rules of the

Max-Min Ant System. In order to reduce the chance of getting stuck

in local maxima, after the first iteration the pheromone levels will be

limited to be between two values calculated from the best solution

that we have encountered. This is described in Eq. (6) and (7), where

𝑓𝑔𝑏 is the fitness of the best solution found, 𝜌 is the evaporation

coefficient, and 𝜖 is the pheromone proportion coefficient:

𝜏max = 𝑓𝑔𝑏/(1 − 𝜌) (6)

𝜏min = 𝜖 · 𝜏max (7)

We only distribute pheromones on the best path taken within

the given iteration. The combination of pheromone placement and

evaporation is described in Eq. (8), where 𝜏𝑖 𝑗 is the pheromone level

between nodes 𝑖 and 𝑗 :

𝜏
(𝑡 )
𝑖 𝑗

= 𝜌 · 𝜏 (𝑡−1)
𝑖 𝑗

. (8)

On the best route found, the pheromone update is described with

Eq. (9), the negative logarithm of the probability of the given path

failing is considered:

𝜏
(𝑡 )
𝑖 𝑗

= 𝜌 · 𝜏 (𝑡−1)
𝑖 𝑗

− log (𝐴(𝑃)) . (9)

The solution generation in our algorithm places the ant on the

chosen start point and moves it to other vertices based on the cal-

culated probabilities until it either reaches the endpoint or exceeds

the maximum available moves that it has. If it cannot reach the end-

point, the path that it produces will be discarded. The calculation of

the aforementioned probabilities is described in Eq. (10), where 𝜏𝑖 𝑗
is the pheromone level between nodes 𝑖 and 𝑗 , 𝜂𝑖 𝑗 is the heuristic

information and N𝑖 is the set of the neighbors of 𝑖:

𝑝 (𝑖, 𝑗) =
(𝜏𝑖 𝑗 )𝛼 (𝜂𝑖 𝑗 )𝛽∑

𝑣𝑞 ∈N𝑖
(𝜏𝑖𝑞)𝛼 (𝜂𝑖𝑞)𝛽

, if 𝑣 𝑗 ∈ N𝑖 (10)

The SP-ACO algorithm works as follows. All ants are placed

in the starting point 𝑠 . Based on the heuristic information and

pheromone level they choose the next node. Nodes can be visited

only once, the last visited node must be 𝑡 . If an ant cannot reach the

endpoint, no path will be returned. The path generation algorithm

is detailed in Algorithm 3.

Until the stopping criterion is fulfilled, which in this case is the

reaching of the maximum number of iterations, the next steps are

repeated: Global and iteration-best paths are computed. In each

step, the new pheromone limits are calculated, the ant with the

highest fitness may place pheromones on their chosen path, while

it evaporates at a constant rate from edges that are not part of that

path. The resulting method is formalized in Algorithm 2.

Algorithm 2: Shortest Path - Ant Colony Optimization

(SP-ACO)

Input: Graph𝐺 = (𝑉 ,𝐴) , cumulative failure probabilities CFP[G],

ACO parameters: 𝛼, 𝛽, 𝜌, 𝜖, nrOfAnts; nrOfIterations, nodes

𝑠 and 𝑡

Output: A safest 𝑠𝑡 -path found

Initialize pheromone trails

𝑖 := 0

while 𝑖 < nrOfIterations do
𝑆 := ∅
repeat

Construct a new path 𝑃 based on Algorithm 3

𝑆 := 𝑆 ∪ {𝑃 }
until |𝑆 | = nrOfAnts;
Calculate the iteration-best and global-best paths: 𝑃ib and

𝑃best, respectively

Compute pheromone trail limits (𝜏min, 𝜏max) based on Eq. (6), (7)

Update pheromone trail on 𝑃𝑖𝑏 based on Eq. (8)

𝑖 := 𝑖 + 1

return 𝑃best

Algorithm 3: Path generation for the SP-ACO algorithm

Input: Heuristic information (𝜂 ∈ R|𝑉 |×|𝑉 |
), Pheromone

information (𝜏 ∈ R|𝑉 |×|𝑉 |
), ACO parameters: 𝛼 , 𝛽 nodes 𝑠 , 𝑡

Output: A generated 𝑠𝑡 -path

𝑃 := 𝑙𝑖𝑠𝑡 (𝑠 )
𝑣 := zeros( |𝑉 | ) // remember previously visited nodes
𝑣 [𝑠 ] := 1

while 𝑃𝑒𝑛𝑑 ≠ 𝑡 and |𝑃 | < |𝑉 | do
𝑗 := 0

𝑟 := 𝑠

while 𝑣 [𝑟 ] = 1 and 𝑗 < maxTries do
𝑟 := new node from N𝑃𝑒𝑛𝑑

based on Eq. (10) 𝑗 := 𝑗 + 1

if 𝑗 = maxTries then
return nothing // the ant failed to generate a

viable solution

𝑣 [𝑟 ] := 1

𝑃 := push(𝑃, 𝑟 )
if |𝑃 | = |𝑉 | and 𝑃end ≠ 𝑡 then

return nothing // the ant failed to generate a viable

solution

return 𝑃

4 NUMERICAL EVALUATION
4.1 Simulation settings
4.1.1 Implementation. For conducting our extensive simulation

experiments, each algorithm (Independent, Edge-dual, and SP-ACO)

was implemented in the same programming language, namely Julia.

Tests were run on a Framework 13 Laptop with an AMD Ryzen™ 5

7640U, 32 GB of RAM, and a Fedora Linux 41 operating system.

4.1.2 Benchmarks. For benchmarks, we use synthetic and real-

world problems. Synthetic benchmarks were generated according to

the following rule: cumulative failure probabilities were generated

randomly for a single link between 0.005 and 0.1 and for two and

three links between 5 · 10−8 and 0.005. All generated networks have
a grid structure. Table 1 describes more details about the generated
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Table 1: Generated synthetic random networks with associ-
ated synthetic failure data - basic properties

Name |𝑉 | |𝐸 | Failure data

n20_1 20 31

|CFP(𝑆1)|=31, |𝑆1 |=1,|CFP(𝑆2)|=10,

|𝑆2 |=2,|CFP(𝑆3)|=10, |𝑆3 |=3

n20_2 20 31

|CFP(𝑆1)|=31, |𝑆1 |=1,|CFP(𝑆2)|=15,

|𝑆2 |=2,|CFP(𝑆3)|=15, |𝑆3 |=3

n20_3 20 31 like for network n20_1, 𝑆2, and 𝑆3 are

connected

n20_4 20 31 like for network n20_2, 𝑆2, and 𝑆3 are

connected

n40_1 40 67

|CFP(𝑆1)|=67, |𝑆1 |=1,|CFP(𝑆2)|=15,

|𝑆2 |=2,|CFP(𝑆3)|=15, |𝑆3 |=3

n40_2 40 67

|CFP(𝑆1)|=67, |𝑆1 |=1,|CFP(𝑆2)|=20,

|𝑆2 |=2,|CFP(𝑆3)|=20, |𝑆3 |=3

n40_3 40 67 like for network n40_1, 𝑆2, and 𝑆3 are

connected

n40_4 40 67 like for network n40_2, 𝑆2, and 𝑆3 are

connected

Table 2: Real-world problem inputs

Network name |𝑉 | |𝐸 | Network from Failure data

22_optic 22 45 [13] [18]

Italy 25 34 [17] [18]

cost266 37 57 [13] [18]

janos_us 26 42 [13] [18]

networks; in column Type, the number of single, double and triple

link failures |CFP(𝑆1)|, |CFP(𝑆2)|, and |CFP(𝑆3)|; and the type of

the failures (by default, non-connected, but there are connected

variants, as well) are presented, respectively.

Basic properties of the real-world networks are presented in

Table 2. The number of nodes, the number of edges, and the source

of the network are detailed in this table. For the numerical experi-

ments, we used a variety of seismic hazard inputs taken from [18].

4.1.3 Parameter tuning. To test the proposed SP-ACO algorithm,

we run a parameter test for the following parameters:𝛼 ∈ {0.5, 1, 1.5,
2} and 𝛽 ∈ {0.5, 1, 1.5, 2}, in order to determine experimentally

optimal values of heuristic information strength and pheromone

strength. The parameter tuning was performed on a real-world net-

work, the janos_us graph. Results are presented in Table 3. Mean

values, standard deviations, and maximum values are presented

over 10 independent runs. The table also presents the generation

number, where the last improvement takes place (globally from the

ten runs). Most configurations resulted in similar results, and the

configuration that was ultimately used is 𝛼 = 1.0, 𝛽 = 1.5. Other

parameters used for the rest of the experiments are: 25 ants, 200

iterations, 𝜖 = 0.1, 𝜌 = 0.3.

4.1.4 Comparisons with other methods. For comparisons, we use

two methods: the Independent Method (indep) [5] that for each

edge 𝑒 , assigns − log(CFP({𝑒})) as its weight, and uses a simple

Dijkstra to obtain the safest path. The Edge-Dual Method (edge-

dual) was proposed in [5], it constructs a so-called edge-dual graph,

and assigns edge weights calculated on the basis of Equation (4).

After that, it also uses the Dijkstra to compute a (supposedly) safest

path.

Table 3: Results of parameter tuning (ten independent runs) on
janos_us graph containing the mean, standard deviation, best result
(max), and the last iteration where an improvement was found by
the SP-ACO algorithm (out of 200 generations)

𝛼 𝛽 𝐴(𝑃SP-ACO ) last generation

mean ± std max of change

0.5 0.5 20 ± 0.00 20 190

1 0.5 20 ± 0.00 20 193

1.5 0.5 20 ± 0.00 20 107

2 0.5 20 ± 0.00 20 177

0.5 1 20 ± 0.00 20 200

1 1 20 ± 0.00 20 123

1.5 1 20 ± 0.00 20 84

2 1 20 ± 0.00 20 180

0.5 1.5 20 ± 0.00 20 200

1 1.5 20 ± 0.00 20 50
1.5 1.5 20 ± 0.00 20 143

2 1.5 20 ± 0.00 20 186

0.5 2 20 ± 0.00 20 200

1 2 20 ± 0.00 20 66

1.5 2 20 ± 0.00 20 144

2 2 20 ± 0.00 20 178

4.2 Results and discussion
4.2.1 General behaviors. For each network, experiments were con-

ducted for each possible 𝑠𝑡 pair (totally

(
|𝑉 |
2

)
experiments, where

|𝑉 | denotes the number of nodes).

Let 𝑃SP-ACO, 𝑃indep, and 𝑃edge-dual = 𝑃
e-d

denote the safest paths

obtained by SP-ACO, the Independent, and the Edge-Dual method,

respectively. Thus,𝐴(𝑃SP-ACO),𝐴(𝑃indep), and𝐴(𝑃edge-dual) denote
their availabilities.

Table 4 presents the results obtained for both the synthetic and

real-world problem inputs. In the case of the synthetic inputs with

graphs having 20 nodes (𝑛20_3, 𝑛20_4) there were no significant

differences between the three methods. When the set of failure

probabilities was not connected (𝑛20_1 and 𝑛20_2) in a few cases

the SP-ACO algorithm found better paths. For the synthetic net-

works with 40 nodes, the behavior of SP-ACO was different: for all

four networks our algorithm found improvements regarding the

independent method, and for the first three networks regarding the

Edge-Dual method.

For setting 𝑛40_4, from the 780 different cases, for 716 cases

obtained the same results (considering the best SP-ACO path), and

for 64 cases, the Edge-Dual method found safer paths as the SP-

ACO algorithm. At the same time, for setting 𝑛40_1, the tendency

is reversed: the SP-ACO outperformed the Edge-Dual method for

86 cases, and for 694 cases, there was no difference between them.

An explanation for this could be that SP-ACO can deal better with

non-connected failure probabilities.

Regarding the nine real-world graph- failure data tuples, SP-

ACO outperformed the independent method in eight cases and the

Edge-Dual method in three cases. For two settings (22_optic_it7

and cost266_it7), it is significant that the result of the SP-ACO:

SP-ACO obtained the better results as the Edge-Dual method in

59.74%, respectively 11.41% of the total cases (231, respectively 666

node pairs).
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Table 4: Comparisons of the availability of the st-paths. Results of synthetic benchmarks and real-world networks, based on 30 independent
runs, the mean, std, and max represent the number of node-pairs on which the SP-ACO algorithm performed better than the independent, the
equal symbolizing the ones where it was equal, while the next column shows the number of node-pairs where the independent outperformed
the mean SP-ACO result. In the table, the 𝑃∗

SP-ACOcolumns symbolize the results when compared to the best result of the SP-ACO algorithm. The
fifth column shows the number of node pairs where the Edge-Dual method outperformed the independent method. The last three columns
compare the SP-ACO algorithm with the edge-dual method in the same way: number of node-pairs, when SP-ACO outperformed the Edge-Dual
method, when it was equal, and in the last column, the Edge-Dual method outperformed our proposed method.

Graph+failure 𝐴(𝑃SP-ACO ) > 𝐴(𝑃SP-ACO )= 𝐴(𝑃SP-ACO ) < 𝐴(𝑃
e-d

) > 𝐴(𝑃SP-ACO ) > 𝐴(𝑃SP-ACO )= 𝐴(𝑃SP-ACO ) <
setting 𝐴(𝑃

indep
) 𝐴(𝑃

indep
) 𝐴(𝑃

indep
) 𝐴(𝑃

e-d
) 𝐴(𝑃

e-d
) 𝐴(𝑃

e-d
)

mean ± std 𝑃∗
SP-ACO

mean 𝑃∗
SP-ACO

mean 𝑃∗
SP-ACO

𝐴(𝑃
indep

) mean 𝑃∗
SP-ACO

mean 𝑃∗
SP-ACO

mean 𝑃∗
SP-ACO

n20_1 2 ± 0 2 188 188 0 0 0 2 2 188 188 0 0

n20_2 4 ± 0 4 186 186 0 0 0 1 1 189 189 0 0

n20_3 0 ± 0 0 190 190 0 0 0 0 0 190 190 0 0

n20_4 0 ± 0 0 190 190 0 0 0 0 0 190 190 0 0

n40_1 84.76 ± 0.77 86 692 694 4 0 0 84 86 685 694 11 0

n40_2 7.8 ± 0.40 8 769 772 6 0 12 1 1 763 775 16 4

n40_3 6.0 ± 0.00 6 771 774 3 0 5 5 5 767 775 8 0

n40_4 2.33 ± 0.54 3 771 777 10 0 67 0 0 684 716 96 64

22_optic_it6 1.00 ± 0.00 1 229 230 1 0 0 0 0 230 230 1 0

22_optic_it7 78.00 ± 0.00 78 153 153 0 0 1 138 138 93 93 0 0

janos_us_it6 1.57 ± 0.82 3 321 322 1 0 3 0 0 321 325 4 0

janos_us_it7 0.00 ± 0.00 0 321 325 5 0 0 0 0 320 325 5 0

janos_us_995 20.00 ± 0.00 20 305 305 0 0 20 0 0 50 325 130 0

cost266_it6 5.03 ± 0.18 6 657 660 3 0 6 0 0 662 666 4 0

cost266_it7 11.00 ± 0.00 11 654 655 1 0 5 76 76 589 590 1 0

cost266 33.00 ± 0.00 33 632 633 1 0 33 0 0 665 666 1 0

italy_it6 31.00 ± 0.00 31 269 269 0 0 31 0 0 300 300 0 0

italy_it7 58.00 ± 0.00 58 242 242 0 0 58 0 0 300 300 0 0

italy_995 30.00 ± 0.00 30 270 270 0 0 21 9 9 291 291 0 0

(a) Unavailability of 𝑃least hop = 𝑃geo. shortest:
145.44% of best found

(b) Unavailability of 𝑃indep = 𝑃e-d: 100.67% of
best found

(c) Unavailability of (𝑃SP-ACO ) : best found

Figure 3: Routes found by the different algorithms on the italy_995 graph between Bologna (id 8) and Monaco (id 10), alongside their relative
unavailabilities. The unavailability of a path 𝑃 is just 1 − 𝐴(𝑃 ) .

As a general conclusion, we can mention that SP-ACO outper-

formed the independent method in almost all settings. The SP-ACO

did not found better 𝑠𝑡-paths as by the Independent method only

in 3 out of the 19 tested settings (namely, in 𝑛20_3, 𝑛20_4, and

janos_us_it7). Regarding the Edge-Dual method for eight settings

our algorithm found better solutions, but almost in all cases found

similar results.

As an advantage of the SP-ACO algorithm we can emphasize

the stability of the algorithm, over the 30 independent runs the

standard deviation in most cases is equal to 0.

4.2.2 A case study. Figure 3 presents one of the cases where the
SP-ACO algorithm found a safer route than the Edge-Dual and inde-

pendent algorithms. Here, because of the subtle differences between

the availabilities of the paths, we investigate their unavailabilities.

The unavailability𝑈 (𝑃) of path 𝑃 is defined just as 1−𝐴(𝑃). On a),

we can see that, under similar circumstances, the downtime of the

custom path through nodes 8− 7− 6− 9− 10, which is both a least-

hop graph and is the shortest path between Bologna and Monaco,

is almost 45% more than the downtime of our best path found. This

shortest path could be seen as a reasonable choice if there is no
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Figure 4: Historical earthquakes from a recent version of the his-
torical parametric Italian catalog [50].𝑀𝑤 = moment magnitude.

knowledge of the possible disasters, as it minimizes the amount of

network infrastructures that are exposed to possible disasters. On

Fig. 3b), we can see the path using nodes 8 − 15 − 14 − 13 − 11 − 10

computed by both the Independent and the Edge-dual methods,

which achieves a near-best unavailability, exceeding it by 0.67%.

Since our disaster data is the one computed by [17], which takes

into account the earthquakes affecting Italy (based on recorded

earthquake history, see Fig. 4), we can see that these methods ba-

sically correctly figure out that, starting from node 8, it worths to

head north to node 15, and to leave the Italian territory to make

a huge detour through Switzerland and France to reach node 10

(i.e., Monaco). We note again that the used disaster data leaves out

the earthquakes that are not affecting Italian territory, and as such,

it can be seen as incomplete for this network topology; however,

it perfectly suits our purposes of exemplification of the outputs

of the algorithms studied here. The output of the best-performing

algorithm, our proposed SP-ACO, is depicted in Fig. 3c). Basically,

it provides the same route as the Independent and the Edge-dual,

except that it realizes that instead of edge {8, 15} it is worth making

a detour through nodes 8−16−22−15. In fact, the unavailability of

the detoured path is more than 1% lower than that of edge {8, 15}.
Note that the significance of this detour is real in the sense that

the earthquake scenarios that should be taken into account are
taken into consideration. With this, the resulting path 𝑃SP-ACO has

the highest availability, or equivalently, the lowest unavailability

among those found, namely ≃ 1.135 · 10−2.
In the following, we translate the above differences between the

availabilities of paths 𝑃
indep

= 𝑃
e-d

and 𝑃SP-ACO availability/ un-

availability to yearly downtimes. First of all, in fact, 𝐴(𝑃) denotes
the probability that path 𝑃 will fail when the next disaster strikes.
In Italy, the expected number of earthquakes is 𝑟 = 5.53 (consid-

ered events that have a strength of > 4.5𝑀𝑤 ) [18]. For the sake of

estimation, we apply a Mean Time To Repair (MTTR) of 24 hours,

equaling 1440 minutes [37] (this MTTR might be an optimistic

under-estimation in case of earthquakes). With this, the expected

downtime differences of the above paths due to earthquakes in Italy

can be calculated as follows:

(1 −𝐴 (𝑃SP-ACO)) · (0.6657%) · 𝑟 ·MTTR ≃ 0.60[min/year].

Note that while an expected downtime difference of roughly

Table 5: Runtimes of the compared algorithms on italy_it6 graph
from node Rome (id 0) to node Bari (id 2) over 5 runs. The results
are presented in seconds.

Method Runtime [sec]: mean ± std

Independent (2.17 ± 0.4) × 10
−4

Edge-Dual (3.93 ± 0.6) × 10
−3

SP-ACO (6.37 ± 0.32) × 10
0

36[sec/year] might not seem a lot, actually, it alone already vi-

olates the Quality of Service requirements, if an availability of

six-nines is prescribed (that is a common prescription). This is be-

cause, in that case, the connection should be working in 99.9999%

of the time, which translates to a maximum allowed downtime of

around 31.5[sec/year].

4.2.3 Runtime analysis. Since each algorithm was implemented in

Julia, runtimes of the algorithms under similar settings are compa-

rable. The times were measured by calling each algorithm 5 times

for italy_it6 and between the same points, namely Rome (id 0) and

Bari (id 2). These nodes were chosen to avoid including the JIT

compilation time for the calculation of the first route when running

the algorithm.

The results are presented in Table 5, where we can see that

the ACO algorithm, while still completing in a reasonable amount

of time, lags behind the other two algorithms. This is consistent

with the general expectations of the difference in the runtime be-

tween heuristic algorithms and greedy algorithms. The independent

method sets the weights of the graph and runs a Dijkstra algorithm

on it, while the Edge-dual builds an auxiliary graph and runs the

same algorithm on the second, hence the relatively small but no-

ticeable difference between the runtime of the two algorithms.

Evaluating the fitness function takes a considerable amount

of time in each iteration of the ACO algorithm, however, due to

caching results, in later iterations, which do not yield a previously

not seen path, can be more efficient with times as low as 5.81×10
−4

compared to the first iteration that averages around 0.635.

5 CONCLUSION AND FUTUREWORK
Safest path computation is a challenging computational task with

several application possibilities, for example, in dependable com-

munication networks for emerging and future mission-critical ap-

plications. In the case where multiple correlated failures can ap-

pear the problem is NP-hard. In this article, we propose an Ant

Colony Optimization algorithm (SP-ACO) to solve the problem.

The cumulative failure probability values are used in the heuristic

information, and in the pheromone update rules. Numerical exper-

iments were conducted on both constructed grid-type synthetic

networks and on real-world problems. Comparisons with existing

methods (the independent method, and the Edge-Dual algorithm)

prove the effectiveness of the proposed approach. Future work will

include analysis of different failure types and parallelization of the

proposed SP-ACO algorithm to deal with larger networks.
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