
Availability-Aware Routing in Presence of
Geographically Correlated Failures

Balázs Vass, Levente Birszki, Erika Bérczi-Kovács, Péter Babarczi, Péter Gyimesi, János Tapolcai

Abstract—Survivable routing is crucial in backbone networks
to ensure connectivity, even during failures, including natural
and man-made disasters. Service-level agreements (SLAs) often
define availability targets in terms of “number of nines” (e.g.,
99.99%, 99.999%), and network operators aim to meet or exceed
these targets by provisioning redundant paths between source-
destination pairs. Nevertheless, ensuring extremely high availabil-
ities comes with extra cost in terms of total network bandwidth
usage. This study formalizes the problem of availability-aware
routing based on risk zone failure probabilities. On the downside,
we find the problem is NP -hard, with minimizing unavailabil-
ities being even inapproximable in polynomial time (supposing
P ̸=NP). Motivated by the hardness results, we initiate the study
of heuristics providing availability-aware routing considering
regional failures. Our methods are suitable for providing a range
of routing plans, navigating the trade-off between availability and
bandwidth usage. At the core of the heuristics, we rely on an
efficiently solvable problem variant, where failure probabilities
of risk zones are changed to capacities. We validate our findings
through extensive simulations based on real-world input data.
With reasonably low bandwidth usage, our heuristic is close to
a lower bound on unavailability, the median and average gap
being 1.23% and 2.21%, respectively.

I. INTRODUCTION

Ensuring high availability in backbone networks is a funda-
mental requirement for mission-critical applications. In prac-
tice, network operators often define availability targets in
terms of “number of nines” (e.g., 99.9%, 99.999%) in their
Service-Level Agreements (SLAs), and aim to meet or exceed
these targets by provisioning redundant paths between source-
destination pairs [1]. Traditionally, this redundancy has been
achieved by computing multiple link disjoint paths under
the assumption that failures are independent. For instance, a
common rule of thumb is that a single path provides 99%

Balázs Vass, Péter Babarczi, and János Tapolcai are with the Dept. of
Telecommunications and Artificial Intelligence, Faculty of Electrical Engi-
neering and Informatics, Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary, and HUN-REN-BME Infor-
mation Systems Research Group. Balázs Vass’s main affiliation is Faculty of
Mathematics and Computer Science, Babes, -Bolyai University of Cluj Napoca,
Romania. E-mails: balazs.vass@ubbcluj.ro, {babarczi,tapolcai}@tmit.bme.hu.

Levente Birszki, Erika Bérczi-Kovács and Péter Gyimesi are with De-
partment of Operations Research, ELTE Eötvös Loránd University, Bu-
dapest, Hungary. Erika Bérczi-Kovács is also with HUN-REN–ELTE Egerváry
Research Group on Combinatorial Optimization. Contact them on {fro-
cor,peti1234}@student.elte.hu, and erika.berczi-kovacs@ttk.elte.hu.

This research was supported by the National Research Excellence Pro-
gramme of the Hungarian National Research, Develop-
ment and Innovation Office under funding schemes ELTE
TKP 2021-NKTA-62, and STARTING_25 ID: STARTING
153002, and Project no. K_23 146347, respectively. This
study has received funding from the European Union’s
Horizon Europe research and innovation programme.

availability, while two link disjoint paths, e.g., with 1 + 1
dedicated protection [2] yield 99.99%, allowing less than an
hour downtime per year for the service.

However, recent insights into the nature of network failures
challenge the assumptions underlying this practice [3], [4],
revealing that multiple failures often exhibit spatial correlation:
network components that fail together are frequently in close
physical proximity [5]. This is especially true in the case of
regional failures caused by natural disasters [6], [7], such as
earthquakes, hurricanes [8] or floods, where multiple links
or devices in the same geographic area can simultaneously
become unavailable [4]. Therefore, the geographic layout of
the paths plays a critical role: two physically distant regionally
disjoint paths may provide better protection than three in the
same area with shared risks. As a result, simply increasing the
number of link disjoint paths does not guarantee a proportional
increase in availability, thus, the design objective of redundant
paths need to shift towards availability from their number.

Several approaches have been proposed to model the spatial
correlation of multiple network failures as Shared Risk Link
Groups (SRLGs) [9], using e.g., geographic [10] disaster mod-
els, but finding SRLG disjoint paths to maximize availability
is a computationally hard problem [11], [12], only solvable
efficiently for special cases [13]. Furthermore, owing to the
uncertain nature of disasters, the introduction of stochastic
failure models [14] led to the concept of Probabilistic SRLGs
(PSRLGs) [15], which consist of a list of edge sets paired with
probabilities, where each entry denotes that the corresponding
set of edges may jointly fail with the associated likelihood. A
key challenge is that even small networks can produce PSRLG
lists with hundreds of entries, for which no efficient routing
algorithm exists to compute paths meeting the specified avail-
ability targets declared in the SLA.

In this paper, we address this issue by proposing an algo-
rithmic framework for availability-aware routing in presence
of regionally correlated failures. The output of our algorithm
determines how many paths are needed, where they should
be routed, and how their spatial layout affects the overall
availability (see Fig. 1). The framework builds on recent
advances in efficient algorithms to compute regionally dis-
joint paths using SRLG models [13], which we generalize
to PSRLGs. Moreover, we extend the original model to (1)
support directed graphs, and (2) to allow each PSRLG to
be assigned a capacity, i.e., a limit on how many paths may
traverse it. This capacity reflects the risk level or criticality of a
PSRLG: higher-risk zones should be traversed by fewer paths.
Our simulations demonstrate that incorporating regional failure

s

t

Fig. 1. 2+1 protection using shortest node-disjoint paths (in solid red)
compared to using our paths (in blue solid, dashed, and dotted, resp.) on
network Optic EU [18]. Although the paths in our solution are longer, and
they are not even node-disjoint, under the next earthquake, ours’ availability is
above five-nines, while the shortest paths fall well below this threshold. This
is partially because our paths avoid the 7 risk zones with the highest failure
probabilities (depicted in green). Seismic hazard input taken from [15].

awareness into backbone network design leads to significantly
more resilient and cost-efficient provisioning strategies [16].

Ultimately, we envision a future where backbone operators
embrace such models to build smarter, availability-aware in-
frastructures that adapt gracefully to large-scale disruptions.
We make the following contributions towards this goal:

• We present the first scalable routing algorithm for back-
bone networks that can operate effectively on PSRLG
lists of realistic size.

• We prove that the underlying algorithmic problem –
Availability-Aware Routing Based on Risk Zone Failure
Probabilities (Problem 1) – is NP -hard.

• The core of our basic heuristic algorithm is an efficient
polynomial-time procedure that solves the Capacitated
Region Routing (CRR) problem (Problem 2). It general-
izes the algorithm of [13], [17] by allowing each PSRLG
to have an associated capacity, which limits the maximum
number of paths that can traverse its edges.

• Advanced heuristic algorithms are designed that optimize
PSRLG capacity assignments to minimize total band-
width consumption, subject to availability constraints on
end-to-end connections.

The paper is organized as follows. §II formalizes the prob-
lem and our main findings. Next, §III investigates the algorith-
mic challenges of the availability-aware routing. An efficient
algorithm for a slightly altered problem variant is presented
in §IV. Using this subroutine, §V builds efficient heuristics
for solving the original availability-aware routing problem.
Then, §VI and §VII discuss some routing considerations and
related works. Numerical evaluations are presented in §VIII,
and finally, §IX concludes our paper.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Inputs and Problem Formulation

The problem input consists of three parts. The first part of
the input is a connected directed graph G = (V , A) with vertex
set V (|V | ≥ 2) and arc set A. In this paper, sometimes we
refer to arcs as links. We store the incident arcs for every
node given in clockwise order, called a rotation system [19].
We say a subset of arcs R ⊆ A is a risk zone if a connected

geographic area a hits all links in R, i.e., every arc in R has
a common point with the interior of a. The set of risk zones
is denoted by R, and we suppose the empty set (denoting the
failure-free state after a disaster) is part of R.

The other part of the problem input encodes the joint failure
probabilities of link sets (i.e., risk zones). For this, for a link
set R ∈R, in line with [15], [20], we define FP(R) (‘link failure
state probability of R’) to denote the probability that exactly
link set R will fail at the next disaster. Note that

∑
R∈R FP(R)=

1, as the next disaster corresponds to exactly one risk zone.
Also, while the input focuses only on common failures of links,
if necessary, these structures can store failure probabilities of
both links and node failures (see [15, §V.]).

The last part of the input stands for a node pair {s, t } ⊆V , a
positive integer k, and thresholds 1 ≥ T0 ≥ T1 ≥ T2 ≥ . . . ,≥ Tk ≥
0, as the problem to be defined will ask for an arbitrary number
of l ∈ {1, . . . ,k} st-paths such that the probability of failure of at
most i of these paths should be at most Ti , for all i ∈ {0, . . . ,k}.
Equivalently, at least l−i paths should survive with probability
≥ 1−Ti . We will refer to bounds Ti as availability thresholds.

Given a set of paths P1, . . . ,Pl , we can define unavailabilities
(that are just 1 minus the availability values) U0 ≥U1 ≥ ·· · ≥
Uk , denoting that at least 1, . . . ,k paths fail due to the next
disaster, in the following way:

Ui =
∑

R∈R

FP(R) · I

(
i ,

l∑
j=1

intersects(R,P j)

)
,

where indicator function I (i ,b) equals 1 if i ≤ b, and is 0
otherwise. Here, function intersects indicates if a path
was affected after the failure of a risk zone:

intersects(R,P j) =
{

1 if R ∩P j ̸= ;,

0 otherwise.

Based on the above, we can formally define the Availability-
Aware Routing Based on Risk Zone Failure Probabilities
problem tackled in this paper as Problem 1.

Problem 1: Availability-Aware Routing Based on Risk
Zone Failure Probabilities

Input: A directed plane graph G = (V , A), nodes s, t ∈V , risk
zones R ⊂ 2E , FP() : R → (0,1] risk zone failure
probabilities, availability thresholds T1, . . . ,Tk ∈ [0,1],
where k is the maximal number of desired paths

Output: st-paths P1, . . . ,Pl≤k such that availability
thresholds T1, . . . ,Tk are met

Examples. Suppose the operator intends to have a set of l
paths (where this number l is not greater than k), with the
failure of a given λ ∈ {0, . . . , l −1} paths being tolerable. In the
SLA, there is a prescribed threshold T of availability. Then, the
question is how to set thresholds T1, . . . ,Tk to phrase the above
task as a Problem 1 instance, as all the rest of the problem
input is given by the circumstances. The most admissive
setting for this is Ti∈{1,...,l−λ} := 1−T , Ti∈{k−l+1,...,k} := 0. Note
that the problem formulation would admit more sophisticated
settings of the thresholds. This could be important e.g., if

ei

ei i

ei i i

ei v

evv1

v2

v3

v4

v5

v6

(a) A Vertex Cover instance f .

10

00

11

01

12

02

13

03

14

04

15

05

s tei={v1,v2} ei i={v1,v3} ei i i={v2,v4} ei v={v2,v5} ev={v2,v6}

S1

S2

S3 S4 S5 S6

FP(Si)≡ 1
|V ′| = 1

6

(b) Problem 1 instance created based on Vertex Cover instance f .

Fig. 2. Example instances of a reduction of Problem 1 to the Vertex Cover problem. There is an st-path of unavailability of at most U1 if there is a
vertex cover in the instance depicted in Subfig. (a) using a fraction of at most U1 of the vertices.

the operator wanted to respect an additional threshold T ′ > T
denoting the requirement for at most 1 path failing; here
T1 := T ′ should be applied.

Remark. In the formulation of Problem 1, we have omitted
the natural objective of minimizing the bandwidth usage (i.e.,
‘cost’) among the feasible solutions. This is because this
overhead is dependent on the survivable routing approach
used by the operator. Heuristics taking in consideration the
minimization of the bandwidth usage will be described in
§V-A, while coding considerations are detailed in §VI.

B. Main Results

We will see in Claim 3 that evaluating whether a set of
paths is a feasible solution to Problem 1 can be easily done
in polynomial time. In other words, Problem 1 is in NP .
However, it is NP -hard even for a single path:

Theorem 1. It is NP -hard to decide whether a solution of
Problem 1 exists, even for k = 1.

Furthermore, the following Claim formalizes that the opti-
mization version of Problem 1 is already hard to approximate.

Claim 2. Using the input of Problem 1 with k = 1, the
optimal unavailability U1 of a single st-path P is NP -
hard to approximate within a factor of ∼ 1.36, and thus does
not admit a Polynomial Time Approximation Scheme (PTAS)
(unless P =NP).

The proofs of Thm. 1, and Claims 3 and 2 are given in §III.

Our final main result is an efficient heuristic that, based on
simulation results, often matches a lower bound on unavail-
ability, with median and average gaps of approximately 1.23%
and 2.21%, respectively.

In the heart of this heuristic approach for solving Problem 1,
intuitively, we will substitute the failure probabilities of risk
zones with capacities on them.

III. COMPUTING AVAILABILITY-AWARE ROUTING BASED
ON RISK ZONE FAILURE PROBABILITIES

Fortunately, evaluating if a solution to Problem 1 is feasible
is algorithmically easy:

Claim 3. Suppose we have a collection C of a number of k
st-paths. Let Ri

C ⊆R stand for those risk zones that intersect
exactly i paths from C . Then, the probability Ai of at least i

paths surviving the next disaster is
∑k−i

j=0

∑
S∈R

j
C

FP(S). Since
this sum is polynomially computable, Problem 1 is in NP .

Proof: The proof of the claim is immediate from the
definition of sets of risk zones Ri

C . Note that sets Ri
C

(i ∈ {0, . . . ,k}) partition the set of risk zones R.

Sadly, the quick positive results end here, as finding a
feasible solution (or proving its inexistence) is algorithmically
hard, and is proved in the following.

A. Proof of the NP -hardness of Problem 1

Proof of Thm. 1: We will provide a reduction from
the NP -complete Vertex Cover [21] to Problem 1. In
Vertex Cover, the input is a graph G ′ = (V ′,E ′) and the
problem is to decide whether there exists a b-node cover of
the edges, i.e., is there a subset V ′′ ⊆V ′ of cardinality |V ′′| ≤ b
such that each edge in E ′ has at least one endpoint in V ′′.

Suppose we are given a Vertex Cover problem instance
F . Suppose the nodes and edges of the instance are given
as lists V ′ = {v1, . . . , v|V ′|} and E ′ = {e1, . . . ,e|E ′|}, respectively.
Suppose each edge e = {vi , v j } ∈ E ′ is given such that i ≤ j .
In the following, we describe a function f , where f (F)
will be an instance of Problem 1 that has an input of size
O(|V ′|+|E ′|), and that can be computed from F in O(|V ′|+|E ′|).
For the Problem 1 instance, for simplicity, we describe the
construction of an undirected graph G = (V ,E). From edge
set E , arc set A is constructed by simply directing each
edge e ∈ E in both directions. Let the set of nodes be
V := {vi , j i ∈ {0,1}, j ∈ {0, . . . , |E ′|}}∪{s, t }. The set of edges is
E := {{v0, j , v1, j } j ∈ {0, . . . , |E ′|}}∪ {{vi , j−1, vi , j } | i ∈ {0,1}, j ∈
{1, . . . , |E ′|}}∪ {{s, v0,1}, {s, v1,1}, {v0,|E ′|, t }, {v1,|E ′|, t }}. Intuitively,
G can be drawn as a 2× (|E ′| + 1) grid graph, with s and t
appended to the nodes on the first and last columns, as depicted
in Fig. 2. As we will see, the i th column of the grid graph will
roughly correspond to the i th edge ei ∈ E ′. If G is drawn this
way, intuitively, the links that may fail at the next disaster are
exactly the horizontal ones, as explained in the following.

For each node u in V ′, there will be assigned exactly one
risk zone Ru ∈ R. For each i ∈ {0,1} and j ∈ {1, . . . , |E ′|},
{vi , j−1, vi , j } ∈ Ru exactly if u is incident to edge e j ∈ E ′, and
u is the first or second node in the description of ei (for i = 0
and 1, respectively.) For each node u ∈V ′, we set the failure
probability of FP(Ru) uniformly to 1/|V ′|.

Note that all the above link sets with FP(S) > 0 are proper
risk zones, i.e., each of them can be covered by a connected

geographic area (see Fig. 2b for an example). This is easy to
verify, since each edge that may fail bounds the infinite face.
With this, the description of function f is complete.

Now we describe function g (P) that maps a given st-path
P being a solution of problem instance f (F) to a solution of
the original Vertex Cover instance F . Given a risk zone
Ru , if P ∩Ru ̸= ;, we add u ∈V to the covering vertex set.

We can observe that the unavailability of P can be optimized
to be at most b/|V ′| only if the Vertex Cover instance F
has a vertex cover of size at most b.

B. Further Notes on the Hardness: Inapproximability

Proof of Claim 2: Observe that in the above construction,
the unavailability U1 of the single st-path is just b/|E ′|, that is
just a scaled-down version of the Vertex Cover parameter
b, where the scaling factor is just the number of edges.
This means that all the hardness results for the minimization
version of Vertex Cover carry over to minimizing the
unavailability of a single path in Problem 1. Thus, the proof of
Claim 2 is immediate from [22, Theorem 1.1], that states the
following: "Given a graph G , it is NP -hard to approximate
the Minimum Vertex Cover to within any factor smaller than
10

p
5−21 = 1.3606. . . ."

Note that the construction for the hardness results did not
rely on the fact that the input graph G = (V , A) is directed.
Thus, the NP -hardness and inapproximability results hold in
the undirected version of Problem 1 too.

IV. ROUTING WITH RESPECT TO CAPACITATED RISK ZONES

In previous sections, we have seen that directly solving
Problem 1 is algorithmically very challenging. Thus, in this
section, we present a similar problem (Problem 2) searching
for a given number of l ∈ {2, . . . ,k} st-paths that can be solved
efficiently. The aim is to heuristically recycle the solution of
Problem 2 as a possible solution to Problem 1. Heuristics on
tackling Problem 1 will be described in §V.

A. The Capacitated Risk Zone Routing (CRR) Problem

Taking one step closer, the main idea is to switch from
probabilities to capacities. Intuitively, if a risk zone R has
a high probability FP(R) of failing, then most likely, it is
not a good idea to let many paths go through it. That is,
this risk zone R should have a ‘low’ capacity cap(R), where
function cap() determines the maximum number of st-paths of
the solution that are allowed to cross each risk zone. Observe
that if we had allowed all l paths to cross a risk zone R,
this risk zone would cease to exist as a constraint to the
solutions. This way, we can formalize the capacity function
as cap() : R → {0, . . . , l −1,∞}, where ∞ is set as the capacity
of all the non-constraining risk zones. Note that each risk zone
R separating s from t should have a capacity of ∞ (i.e., it has
to be able to host all the l paths), otherwise no solution exists.

To make the above problem efficiently solvable, we need
an extra assumption: paths of the solution should be non-
crossing. Here, two paths are non-crossing if, after contracting

their common edges, there is no node where the edges of
the paths are alternating; l paths are non-crossing if they are
pairwise non-crossing. Non-crossingness is mostly a technical
assumption, as in plane graphs, if two paths are node-disjoint,
they are also non-crossing. With the above modifications
applied to Problem 1, we can formalise Problem 2 as follows.

Problem 2: Capacitated Risk Zone Routing (CRR)
Input: Directed plane graph G = (V , A), nodes s, t ∈V , risk zones

R ⊂ 2E , cap() : R → {0, . . . , l −1,∞} capacity function on
the risk zones, number of desired paths l ≥ 2.

Output: non-crossing st-paths P1, . . . ,Pl such that for every
risk zone R ∈R is intersected by at most cap(S)
paths if they exist; or proof of inexistence.

The following claim gives a bound on the performance of
a Problem 2 solution recycled for Problem 1.

Claim 4. Given a Problem 2 input, for j ∈ {0, . . . ,k −1}, let
R j denote the set of risk zones R ∈ R for which cap(R) = j .
Then, we have the following upper bound on the probability
of at most i ≥ 1 paths failing: Ui ≤∑i

j=1 j ·∑R∈R j
FP(R).

Proof: By definition, each risk zone R can hit at most
cap(R) paths in the worst case. That is, in the worst case,
concentrating solely on risk zone R, a number of cap(R) paths
can be hit, with a probability of FP(R). The proof of the claim
is imminent after adding up these worst-case values.

B. Algorithmic Considerations for Solving the CRR Problem

For the undirected unit capacity case of Problem 2, an
efficient polynomial-time algorithm called DateLine relying on
a min-max theorem was given in [17]. Later, [13] generalized
the results to directed graphs. In a nutshell, a minor tweak
to the DateLine algorithm makes it suitable for solving the
CRR problem in unchanged time complexity. We will call the
resulting method the CRR algorithm. The main idea of the
algorithm is that the existence of a feasible solution to the
CRR Problem is equivalent to the non-existence of a negative
cycle in an auxiliary weighted graph D∗ = (V ∗, A∗) defined in
the following (note that its arc set is different from the arc
set of the usual dual graph). Here, V ∗ is just the set of faces
of planar graph G , and and the arcs are derived from R: for
every risk zone R ∈R, we add a complete directed graph on
the faces neighboring the edges of R to A∗. Parallel arcs in
the auxiliary graph are possible. If an arc a was added due to
risk zone R, we may indicate it with adding a subscript R to a,
i.e., a = aR . The function describing arc weights cl () : A∗ →Z

can be intuitively depicted as follows. First, we fix a directed
st-path P . For an arc aR , let ξ(aR) denote the number a curve
lying inside risk zone R running from the tail to the head
of aR crosses P right-to-left minus the number it crosses P
left-to-right. Then, cl (aR) = cap(R)+ ξ(aR) · l . Specifically, if
an aR does not cross P , cl (aR) = cap(R), if it crosses P from
left to right, cl (a) will be cap(R)− l , and in case of a right-
to-left crossing, cl (a) is cap(R)+ l . To prevent a path using
each arc (a,b) ∈ A backwards, we add an extra arc (r∗, l∗)

cap(R1)
= 2

cap(R2)= 2 cap(R3)= 1

cap(R4)= 2

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

s

t

3 4 4 3

2 2 1 0

3 3 3 3

3

−→ +(l =3)
←− −(l =3)

Fig. 3. A function π on the faces encoding l = 3 st-paths in a Capacitated
Risk Zone Routing (CRR) problem instance.

to A∗, where r∗ and l∗ are the faces neighboring (a,b) on
the right and left, respectively. If (a,b) is not on path P , is a
forward arc, or a backward arc on P , then cap((r∗, l∗)) equals
0, l , and −l , respectively. Note that a more formal definition
of cl would exceed the limits of this paper; however, the cost
function cl in this paper is almost exactly the same as the one
formally defined in [13], [17], with the only difference that
there, instead of the capacity-dependent term cap(R), there
was constant 1 (referring to the unit capacity).

If there is no negative cycle in D∗ according to cl , we
can compute a function on the faces π : V ∗ → Z such that
cl (uv)+π(u)−π(v) ≥ 0 for all (u, v) ∈ A∗. Such a function
π can be computed e.g. by choosing any face v∗ ∈ V ∗ of
and by setting π(w∗) := distcl (v∗, w∗) for each w∗ ∈ V ∗.
These distances can be computed using the Bellman-Ford (B-
F) algorithm [23] or, e.g., [24]–[26]. Then, a corresponding
arc set F can be created, which describes the required paths
P1, . . . ,Pl . Intuitively, the boundaries between the mod l
classes of faces of G according to π determine l paths forming
a feasible solution of Problem 2 (as depicted on Fig. 3).

On the other hand, if there is a negative cycle C ′ according
to cl in D∗, it is a witness for the non-existence of a solution
in the Problem 2 instance. E.g., decreasing cap(R4) to 1 would
induce a negative cycle. Conform to this, no l = 3 paths could
cross the third column of horizontal edges. Again, such a
negative cycle can be found using the B-F algorithm or similar.

The formal proof of correctness of the CRR algorithm
formulated in Problem 2 is predominantly analogous to the
DateLine’s; thus, we refer the interested reader to [13], [17].
The minor but important additional observation in our case is
that since cap(R) < l for each R ∈R that does not separate s
from t , and paths P1, . . . ,Pl are non-crossing, there is no tuple
R,Pi such that R would not separate s from t , but R∪Pi did so.
Intuitively, no path crosses a risk zone twice, thus the output
is correct. Also, as far as l is O(|V |2) (that is a very practical
assumption), all complexity considerations remain the same
for the CRR algorithm as those presented in [17].

In conclusion, the CRR Problem can be solved efficiently.
Thus, based on Claim 4, a time-efficient family of heuristic
strategies for tackling Problem 1 is to solve appropriate CRR
problem instances by experimenting with the capacities of the
risk zones, aiming to meet the availability thresholds defined
in Problem 1. Such heuristics will be described in §V.

V. HEURISTICS FOR SOLVING THE AVAILABILITY-AWARE
ROUTING PROBLEM

In this section, we describe heuristics for solving Problem 1.
Even with the subroutine solving CRR problem instances in
hand, providing feasible solutions to Problem 1 is a chal-
lenging task. Furthermore, as it will be presented in §VIII,
empirically, in some settings, solutions with fewer paths may
perform better in terms of availability, and can also yield
arguably good availability-bandwidth usage trade-off. Thus,
our strategy is to generate multiple possible solutions to the
problem, with possibly fewer paths than k. More precisely,
for each Problem 1 instance, we generate a number of k −1
different (but somewhat interconnected) collections of paths
consisting of l = 2,3, . . . ,k paths, respectively.

A. The Basic Heuristics

In the following, we describe our heuristics relying on
solving a sequence of CRR Problem instances for solving
Problem 1 instances. We suppose, in continuation, that the
maximal number of paths k we are searching for is at least 2.
To initialize a CRR problem instance, we take from the inputs
of Problem 1 graph G , nodes s, t , and risk zones R, then, we
initialize the capacity function as follows. First, let us denote
by R0 the set of risk zones R ∈R that do not separate s from
t . For each R ∈R0, we set the capacity uniformly 1; and we
set cap(R) to ∞ for all R ∈R \R0.

First, we are looking for a solution with l = 2 paths. Later,
the value of l will be increased one by one until it reaches k.
Regarding the CRR instance we got, there are two possibilities:

1) We are given a negative cycle C as a witness of infea-
sibility: Each arc of C corresponds to a risk zone in a set
Rcutting of risk zones that make the CRR problem infeasible.
To reach a CRR instance that has a feasible solution, the
capacity of at least one R ∈ Rcutting has to be increased. For
this, heuristically, we choose an R ∈ Rcutting with minimal
cap(R) ·FP(R) value. Recall that due to the inner workings of
the CRR algorithm, when searching for l paths, it is important
that all the finite risk zone capacities are within the range of
{0, . . . , l −1}. Thus, if the capacity of a risk zone R reached l ,
we set cap(R) :=∞. With the increased capacities, we retry.

2) There is a feasible solution P l
1, . . . ,P l

l of l paths: In this
case, we return with them. If l < k, the value of l is increased
by 1. For risk zones R ∈R0 with cap(R)=∞, we set cap(R) to
the number of paths that cross R in the actual solution (thus,
for each R ∈R0, cap(R)≤ l−1). The CRR algorithm is re-run.

B. Shortening the Resulting Paths

The CRR algorithm on its own is insensitive to the length
of the resulting paths. In most settings, however, extreme
stretches compared to the length of a shortest st-path should
be avoided. Thus, in this subsection, we describe three slightly
interconnected strategies for optimizing path lengths.

Algorithm 1: Strategy S1 (Making room, then use S0)
Input: A directed plane graph Gc = (V , Ac), nodes s, t ∈V , risk

zones R ⊂ 2E , FP() : R → (0,1] risk zone failure probabilities,
number of desired paths l , capacities cap() :R →{0, . . . , l−1,∞},
feasible set of paths P l ,0

1 , . . . ,P l ,0
l

Output: Set of shortened paths P l
1, . . . ,P l

l ; updated capacities cap()
1 i := 0

while maxl
j=1 log

(
U l ,0

j

)
≥ log

(
U l ,i

j

)
·101% do

2 increase cap(R) for R = argminR∈R cap(R) ·FP(R)
3 i := i +1

4 run CRR algorithm −→ path set
{

P l ,i
1 , . . . ,P l ,i

l

}
5 i := i −1 // revert the last capacity increase to

likely be within violation bound

6 with paths P l ,i
1 , . . . ,P l ,i

l
, shorten by S0 −→ path set

{
P l

1, . . . ,P l
l

}
7 for all R ∈R0, set cap(R) to be tight w.r.t.

{
P l

1, . . . ,P l
l

}
return path set

{
P l

1, . . . ,P l
l

}
, and capacities cap()

Algorithm 2: Strategy S2 (Trimming)
Input: A directed plane graph G = (V , A), nodes s, t ∈V , constant c ∈N+
Output: Trimmed graph Gc (V , Ac)

1 Fix a shortest st-path P
2 A(Gc) := {a ∈ A|dist(P, a) ≤ c}

return Gc (V , Ac)

Strategy S0: Postprocessing an existing solution: This
strategy takes a set of l paths as input, fixes l − 1 of them,
deletes the arcs of risk zones R that are full (i.e., a number
of cap(R) of the l −1 fixed paths are already going through
them), and searches for a shortest path in the remaining graph.
Note that such a path always exists. The heuristic stops when
there is no path out of the current collection that could be
shortened. It is easy to see that this heuristic is finite. In our
implementation, we prioritized the shortening of the current
longest, second longest, etc. paths. This strategy resembles a
standard technique in the literature [17], [27]–[29].

Strategy S1: Providing room then use S0: The main
problem with the above-presented shortening heuristic is that if
there are many risk zones R in the CRR problem instance that
are tight in the sense that the number of paths in the solution
that cross R is just cap(R). Intuitively, this is a problem for
shortening the path lengths because tight risk zones severely
restrict the room of movement of the actual path that is being
recomputed in the hope of being shortened. This means that
the more successful the basic heuristic was in only increasing
the capacities where needed (i.e., keeping risk zones tight) the
smaller this possible room of movement of the path is.

To navigate this anticipated trade-off between the availabil-
ity scores and total path lengths of the resulting paths, we
propose the following. First, we search for a feasible CRR
problem instance with the above-described capacity increasing
strategy. Then, based on the yielded paths P1, . . . ,Pl and
risk zone failure probabilities, we evaluate unavailabilities
U l ,0

i denoting the probability of at most i of them failing
(i ∈ {0, . . . , l }). Then, first, by possibly reducing some of the
risk zone capacities, we set the capacities of the risk zones
R ∈R0 to be tight with respect to P1, . . . ,Pl . Second, we have

Algorithm 3: Heuristic for tackling Problem 1
Input: A directed plane graph G = (V , A), nodes s, t ∈V , risk zones

R ⊂ 2E , FP() : R → (0,1] risk zone failure probabilities, maxi-
mum number of desired paths k, constant c ∈N+ for strategy S2.

Output: A collection of k −1 path sets with reasonably high
availabilities, consisting of 2, . . . ,k paths

1 run strategy S2−→ record graph Gc (V , Ac)
2 cap(R) := 1, ∀R ∈R
3 for l = 2..k do
4 run CRR algorithm // described in §IV-B

while Output of CRR is negative cycle C do
5 increase cap(R) for for R = argminR∈Rcutting cap(R) ·FP(R)
6 run CRR algorithm

7 for all R ∈R0: set cap(R) to be tight w.r.t. output of CRR
8 run strategy S1−→ record its output as Paths[l] and modified cap()

return Paths

to slightly change the capacity-increasing strategy, as, having
a feasible problem instance, we do not have a negative cycle
anymore (that would be a proof of inexistence). Thus, we
choose an R now from the whole risk zone set R with minimal
cap(R) ·FP(R). With this updated rule, until the availabilities
do not degrade ‘too much’, we repeat increasing the risk
zone capacities, solving the resulting problem instance, and
evaluating unavailabilities U l ,i

j of the current solution, where

U l ,i
j denotes the probability that, in the i th iteration, no more

than j paths of the actual solution will fail. Here, our strategy
is to stop manipulating the risk zone capacities when, for
some i , after the i th capacity increasement, for some path
index j , log(U l ,i

j) exceeded log(U l ,0
i) ·101%, that is when the

logarithm of one of the unavailability scores got more than 1%
worse compared to the availability-wise conservative baseline
solution.1 Then, we run the shortening heuristic S0 on the last
CRR instance not violating the allowed degradation in terms
of unavailability. Strategy S1 is formalized in Alg. 1.

Strategy S2: Trimming remote parts of G: Even with the
above-described relaxation method, one might judge that the
resulting paths are still too long, thus too costly. A more
aggressive way of constraining the path lengths is by banning
the paths from using parts of the graph, that are ‘far away’
from a shortest st-path. Intuitively, e.g., making a connection
more reliable in the contiguous US through Japan might be
an overkill. After choosing a shortest st-path P in G , we can
define graphs G0,G1, . . . with arc sets A0, A1, . . . , respectively,
where arc set Ai contains those arcs that are no further than in
an i -hop distance from P . Note that for a sufficiently large i ,
Ai is just the arc set A. While trimming the input graph might
be an efficient tool in constraining the lengths of the paths
in the solution, its drawback is a possibly sharp decrease in
availability compared to the baselines, where all the arcs on
the original graph G could be used. Strategy S2 is summarized
in Alg. 2. Note that for simplicity, we suppose functions FP()
and cap() still use graph G (i.e., they are not restricted to Gc).

The full-blown heuristic is summarized in Alg. 3.

1A larger room for unavailability degradation could be also used as a trade-
off yielding possibly shorter routes, but in our experience, 101% proved to be
a reasonable sweet spot. Upcoming strategy S2 can take care of path lengths.

VI. SURVIVABLE ROUTING ALONG THE PATHS AND
BANDWIDTH USAGE

To tailor availability-aware paths to the characteristics of
the provided service, the network operator can tune the level
of failure resilience by selecting different survivable routing
techniques to transfer data along the l st-path found by our
heuristics for Problem 1. The simplest proactive method is
to send the same copy of data along the paths for maximum
survivability like dedicated protection [2]. Although the con-
nection survives failures along ≤l−1 st-paths, it uses at least l -
times the links (bandwidth) of the shortest path (original data).

Instead of duplication, in diversity coding [16] the original
data is split into l −1 parts sent along l −1 different st-paths,
while the l th path is used to transfer redundancy data by using
the eXclusive OR (XOR) operation of the l −1 original data
parts [2]. Thus, no packet retransmission is required if one
of the path fails, as the target node t can reconstruct the
sent information by simply XOR-ing the data of the surviving
l −1 paths (if needed). Diversity coding can be generalized to
provide higher redundancy by using l −λ paths for sending
the original data parts while utilizing λ paths to provide
redundancy. With this approach the connections survive λ path
failures, but instead of XOR coding linear operations over
finite fields with 2O(log l) size required [16], which might lead
to more complex network operation than using efficient XOR
coding implementations, e.g., in optical networks [30].

Claim 5. Suppose sending a unit capacity data flow over a
single data link uses a unit of bandwidth. Then, sending a
unit amount of data using l paths and surviving the failure
of a number of λ paths can be done using an amount of L

l−λ
bandwidth, where L is the total length of the paths.

Proof: Based on the results discussed in this section,
sending a unit amount of data using l paths and surviving
the failure of a number of λ paths can be done via sending an
amount of 1/(l−λ) data over each path.

VII. RELATED WORKS

Works in the field of risk zone-disjoint routing: Risk zones
are just special Shared Risk Link Groups (SRLGs). In general,
many of the questions related to SRLG-disjoint routes are
NP -hard. The NP -hardness of some problem variants was
investigated in [31]–[34]. Some polynomially solvable cases
were investigated in [32], [33]. ILP and Mixed ILP solutions
of problem variants were given in [35]–[38]. Heuristics were
also proposed [39], [40], bearing issues like possibly non-
polynomial runtime or possibly arising forwarding loops.
Notably, based on a probabilistic SRLG model defined in
the paper, exploratory study [14] aims to find a pair of paths
with low joint failure probability via an ILP, using synthetic
data. For a comprehensive guide in modeling geographically
correlated failures in backbone networks, we refer to [41].

Background for the CRR algorithm: Papers [13], [17], [27]–
[29], [42]–[44] constitute a chain of studies on risk zone
disjoint routing problems, that gradually laid the theoretical
foundations for the solution of the Capacitated Risk Zone

Routing (CRR) Problem. The CRR algorithm of our paper
relies on a black-box algorithm that is suitable for computing
shortest paths in possibly negatively weighted graphs if there
is no negative cycle, and can return a negative cycle if there
exists one. The Bellman-Ford (B-F) algorithm [23] suits these
tasks well. Our simulations used a heuristic speedup of the
B-F [24]. Papers [25] and [26] are alternatives with attractive
deterministic and randomized time complexities, respectively.

VIII. EVALUATION RESULTS

In this section, we present our numerical experiments
demonstrating the effectiveness of the proposed heuristics,
using real-world problem inputs. The algorithms were im-
plemented in Python and C++, using various libraries. The
implementation can be accessed through a public repository
(see §IX). Runtimes were measured on a commodity laptop
with a CPU at 1.8 GHz and 16 GB of RAM. In the simulation
results, instead of concrete availability values, we present the
survival/failure probabilities of the network connections when
the next disaster hits. Based on failure probability F , it is
straightforward to compute the unavailability of the connection
caused by the disasters, since the yearly downtime can be
estimated as F times the rate of the earthquakes considered
(e.g., ∼ 5.3 per year for Italy) times the Mean Time To Repair
(MTTR) of the connection. The MTTR is highly dependent
on the operator, thus we leave it open to be chosen arbitrarily.

A. Input data
To conduct our experiments on tuples of real-world back-

bone topologies and related risk zones and their failure proba-
bilities, we decided to reach out for the data produced in [15].
Paper [15], based on a careful processing of the available real
seismic hazard data, produced risk zones and related failure
probabilities for a number of 7 network topologies, taken from
[18], [45]. Out of these, 3 topologies are North American, 3 of
them span Europe, and there is a national network from Italy.
The first three columns of Table I contain the name, node, and
edge count of these topologies. Column 4 depicts the number
of risk zones at intensity tolerance equaling VI according to
the MCS scale [46]. Vaguely, this means that we suppose the
network equipment may fail in case of a ‘strong’ shaking, with
peak ground accelerations exceeding around 1.2 [m/s2].

B. Baseline Approaches and Lower Bounds
1) Naive baselines: To provide baseline data points, we

computed l = 1,2, . . . , up to the maximal number of node-
disjoint st-paths. To do so, we computed a minimum-cost
interiorly node-disjoint st-flow of size l = 1,2. . . with uniform
arc costs. Note that for l equalling 1 and 2, respectively, this
approach outputs the same paths as the fast Dijkstra [47] and
Suurballe [48] algorithms, respectively. We will refer to this
heuristic simply as Shortest.

2) Traditional approach for more reliable paths: As we
have seen in Thm. 1, Claim 2, in our setting, it is computa-
tionally hard to find an st-path that maximizes the availability.
For finding a reasonably safe st-path, a folklore technique
also described in [49] starts with unrealistically assuming

TABLE I
THE INVESTIGATED INPUT SETTINGS. COMPARISON OF ARZP2

ADV TO SHORTEST2 AND UNAVAILABILITY LOWER BOUND. RUNTIMES.

Network name |V | |E |
risk

zones at
VI (MCS scale)

Our ARZP2
adv vs. baseline Shortest2, out of 50 st-pair per graph ARZP2

adv unavailability avg. runtime of
[%] st-pairs vs. Shortest2 decrease in unav. increase in bandwidth over ulbin [%] ARZPadv per

better m. rel. shorter same avg % safest % avg. % safest in % min max avg median st-pair [sec]
Optic EU 22 45 202 4 52 80 44 16.03 67.44 14.35 14.29 0 13.8 2.5 1.4 150

Italian 25 34 308 6 56 76 38 18.67 72.88 23.52 50 0 10.3 1.8 0.7 201
US 26 43 246 0 54 84 38 10.27 74.77 14.92 42.86 0 13.5 2.7 1.9 172

Nobel EU 28 41 149 2 46 94 50 5.53 27.32 7.27 22.22 0 10.5 1.7 0.7 157
EU 37 57 212 2 40 94 50 5.12 24 4.75 22.22 0 25 2.5 0.6 156

N.-American 39 61 394 2 60 84 32 10.94 91.47 9.81 0 0 8.8 2.4 1.6 219
NFSNET 79 108 969 10 52 84 26 15.52 93.59 9.04 4.35 0 13 1.9 1.7 441

that link failures are independent. For each link a ∈ A, we
will assume that the probability that a fails is less than 1,
i.e., 0 ≤ ∑

R∈R:a∈R FP(R) < 1. By assuming the independence
of the link failures, the availability of an st-path P can be
expressed as Aindep(P) =Πa∈P (1−∑

R∈R:a∈R FP(R)). Since the
logarithm is strictly monotone, the maximum of the logarithm
of the original expression is reached on the same paths that
also maximize Aindep(). The logarithm of a product is the
sum of the logarithms, thus, after multiplying with −1, it
is enough to minimize

∑
a∈P wa , where weight wa is set to

− log(1−∑
R∈R:a∈R FP(R)), for each arc a ∈ A. This can be

found by e.g., the Dijkstra algorithm [47], since the weights are
nonnegative. To provide a similar, more refined heuristic for
l = 2,3, . . . paths, we searched for a min-cost node-disjoint st-
flow of size l = 2,3, . . . with the same weights wa . Collectively,
we refer to this heuristic family as Independent.

3) Lower bounds on unavailability and bandwidth: A sim-
ple lower bound on the achievable minimal unavailability
is yielded by simply summing up the FP(R) for risk zones
R ∈R\R0, i.e., the failure probabilities of regions that separate
s from t : ulb =

∑
R∈R\R0 FP(R).

Recall that in our model, sending a unit amount of data over
a data link translates of a unit of bandwidth. Thus, the length
blb :=dist(s, t) of a shortest st-path (in terms of hop count)
is the minimum amount of bandwidth unit needed.

We will use the following terminology for comparing two
solutions of the problem S and T . That is, we say: 1) S is
more reliable than T if S has a lower unavailability than T ,
2) S is shorter than T if S uses less bandwidth than T , and
finally 3) S is better than T if it is both more reliable and
shorter than T . Specifically, no solution can be either more
reliable than ulb or shorter than blb.

C. Survivable Routing Along the Paths
We investigated different diversity coding based survivable

routing approaches on the l paths by using λ = 1,2 and 3
out of them as backup, shown in Fig. 4 for a selected st-
pair in the Optic EU network. Here, for solving the problem
of Availability-Aware Routing Based on Risk Zone Failure
Probabilities, we used our heuristic Alg. 3 without any graph
trimming (i.e., setting c =∞ for S2, or equivalently, omitting
line 1), referred hereafter as the ARZPadv method. One can
observe that for lower l values, each method reached the
maximum achievable availability value. This is because by
increasing the number of paths, the paths explore larger parts
of the network, which makes them prone to more failures, thus
the failure probability increases as well. Furthermore, for each
l , λ = 1 backup path has the lowest bandwidth consumption
among the three routing approaches (with the bandwidth usage
growing as λ grows). The above is positive news as the
approach using λ = 1 backup has an efficient XOR coding
implementation for most network technologies [16]. Therefore,
we provide our results with λ = 1 backup path in the rest of
the paper as the most efficient survivable routing on our paths.

D. Comparison of the Basic and Advanced Heuristics
In Fig. 5 we compared the performance of the ARZPadv

heuristic to the plain ARZPbasic heuristic (as described in
§V-A) and the baselines, and investigated the effect of our
path shortening strategies on the bandwidth. From now on,
for each algorithm ALG tackling Problem 1, we will refer
to its l -path output as ALGl . Note that here we suppose the
solution uses λ = 1 backup path if l ≥ 2, while for l = 1,
it can use none. Concentrating on Fig. 5, one can see that
closely optimal availabilities are reached with low bandwidth
by ARZP2

adv and ARZP3
adv. Observe that these bandwidths

ulb 10−4 10−3
blb

5

10

15

20

2

34
56 7 8

910

3

4
5
6 7

8 9 10

4

5

6
789 10

1

Failure probability

B
an

dw
id

th

ARZPadv with 1 backup
ARZPadv with 2 backups
ARZPadv with 3 backups
shortest path

Fig. 4. Failure probability vs. band-
width usage of path sets by ARZPadv
up to 10 paths with λ= 1,2,3 backups.

ulb 10−3 2 ·10−3
blb

5

10

15

20

2

3

4 5

2
3 4 5

1

23
4

1
2

3 4

Failure probability

ARZPbasic
ARZPadv
Shortest
Independent

Fig. 5. ARZPbasic versus ARZPadv
compared to the baselines for a node
pair in Optic EU.

ulb 2 ·10−5 10−4 10−3
blb

3

5

8

10

2

3

4

2

3

4

5

1

2
3

1

2
3

Failure probability

ARZPS2(2)
ARZPadv
Shortest

ulb 10−25 ·10−3
blb
10

20

30

2

3
45 6

1

2

2

3
4 5

6

1

2

Failure probability

ARZPS2(4)
Independent

Fig. 6. Effect of graph trimming in hope of lower bandwith. On the
left and right: results for selected st-pairs taken from Optic EU and
NFSNET, respectively.

not exceeding 5 were achieved as the cost of sacrificing
some availability while significantly shortening the solutions
of ARZPbasic. In fact, the most reliable solutions in decreasing
order are ARZP2

basic, Independent2 and ARZP2
adv, with slight

degradation of availability, but massive savings in bandwidth,
In fact, for l ≥ 2, ARZPl

adv has comparable bandwidth con-
sumption to heuristic Shortestl , while approaching the failure
probability of Independentl paths. As a takeaway, both Fig. 4
and Fig. 5 suggest that the path pair provided by ARZP2

adv
is an attractive choice for survivable routing, its most direct
competitors being Shortest2 and Independent2. We will further
analyze the outputs of ARZPadv in the next subsections.

E. Comparison of the Advanced Heuristic to the Baselines
Columns 5-12 of Table I depict our simulation results

comparing ARZP2
adv to Shortest2, run on 50 uniformly random

chosen terminal pairs in each network topology. Columns 5-8
compare the quality of the solutions. If the path pair provided
by ARZP2

adv was better or the same as Shortest2, we counted
the respective terminal pair in both col. 5 and 8, or only in
col. 8, respectively. If there was no better solution provided
by ARZP2

adv, then if there was more reliable and shorter, we
counted the terminal pair in col. 6 and 7, respectively. In
the majority of the settings, ARZP2

adv provided shorter, more
reliable, or even better solutions. Columns 9 and 10 represent
the average and maximal decrease in unavailability per topol-
ogy using the ARZP2

adv solution over the Shortest2. Note this
decrease can be significant, in some cases being over 90%.
Columns 11 and 12 depict the ratio of the extra bandwidth of
ARZP2

adv; usually being modest, it never surpassed 50%.
Table II depicts the metrics discussed above, but here the

baseline was substituted with the Independent2, that is, a naive
heuristic intended to minimize unavailability. Note that in
some cases, ARZP2

adv still cuts down almost 3/4 of the baseline
unavailability while using typically slightly less bandwidth.

F. Comparison to the Unavailability Lower Bound
Returning to Table I, its last columns (except the very last)

depict the extra unavailability incurred by ARZP2
adv compared

to the lower bound on the unavailability (yielded by the risk
zones separating s and t). The results are convincing: many
times, ARZP2

adv matches the lower bound, with the median
and average gap being around 1.23% and 2.21%, respectively.
The gap never exceeded 25%.

G. Improving Path Length with Trimming in S2
Finally, Fig. 6 showcases the effect of graph trimming

with strategy S2 to limit bandwidth usage more aggressively.
TABLE II

SAME SETTING AS TABLE I, BUT INDEPENDENT2 AS BASELINE.
Network

name
[%] st-pairs Adv. vs. Ind. decr. in unav. inc. in bandwidth

better m. rel. shorter same avg% safest% avg.% safest%
Optic EU 30 26 62 10 11.43 49.14 −13.41 50.00

Italian 0 62 82 36 10.96 60.74 19.59 50.00
US 28 28 68 2 7.85 74.77 −8.87 −28.57

Nobel EU 26 26 72 28 6.63 27.16 −3.12 8.33
EU 42 32 56 12 8.00 28.65 −9.52 −30.77

N.-Am. 34 12 64 12 6.62 74.77 −18.35 −13.33
NFSNET 22 8 78 10 3.31 51.73 −14.62 −8.33

We will call the full-blown version of Alg. 3 using S2 with
constant c as ARZPS2(c) (that leaves only a shortest path P
and arcs no further from P than c hops in the graph). We
conducted simulations on the 22-node Optic EU, and the 79-
node NFSNET networks, where the trimmed graph Gc equals
to the original G for c ≥ 4 and c ≥ 18, respectively. Results are
shown on the left and on the right of Fig. 6, respectively.

In case of Optic EU, one can observe that while producing
similar unavailability, ARZP2

S2(2) lowers the bandwidth con-
sumption compared to ARZP3

adv. In NFSNET, being a larger
network, we found that with a slight increase in c to compared
to the EU topology (i.e., larger detours are allowed compared
to the demonstrated setting on Optic EU), ARZPS2(4) produces
potentially reasonable availability-bandwidth trade-offs. Note
that this solution is also shorter than the solutions of the
Shortest - this can happen since the paths in our solutions
do not have to be node, or even edge disjoint. A remark to be
made here is that in both the presented cases, more trimming
would yield significantly higher unavailabilities, being closer
to the unavailability of a shortest path.

H. Runtime analysis
The last column of Table I presents the average runtime

of the ARZPadv heuristic per network topology, where we
searched for at most k = 10 paths. Our simulation was not
particularly optimized for speed. Only the CRR algorithm
was implemented in C++, which was repeatedly called from
a Python framework. The average runtime per terminal pair
was between 150 and 441 [sec] for all networks.

IX. CONCLUSION

In this paper, we introduced a routing algorithm for back-
bone networks that accounts for correlated link failures, a
problem we termed Availability-Aware Routing Based on
Risk Zone Failure Probabilities (ARZP). This formulation
incorporates the observed spatial correlations in link failures,
such as those caused by natural disasters affecting geograph-
ically co-located links. We first proved that the ARZP prob-
lem is NP -hard. To address this, we proposed an efficient
heuristic algorithm whose core is a polynomial-time method
for computing SRLG-disjoint paths in planar graphs, where
each SRLG is assigned a capacity limiting the number of
traversing paths. Our ARZPadv algorithm scales to real-world
network sizes and computes routing plans that meet target
availability thresholds. Simulation results confirm that achiev-
ing high end-to-end availability accomplished with multiple
node-disjoint paths can be suboptimal not only in terms of
availability, but can use significantly more bandwidth than
necessary. Instead, routing over multiple partially overlapping
paths yields higher availabilities – on average within ∼2.2%
of the theoretical bound – while reaching attractively low
total bandwidth demand. Surprisingly, even for the widely
deployed 1+1 protection scheme, the paths found by our
method (ARZP2

adv) are substantially more efficient alterna-
tives, both in terms of availability and resource usage. The
authors have provided public access to their code and data at
https://github.com/beer-sky/availability-aware-routing.

REFERENCES

[1] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger,
“General availability model for multilayer transport networks,” in Proc.
Design of Reliable Communication Networks (DRCN), Lacco Ameno,
Italy, 2005.

[2] A. Pašić, P. Babarczi, J. Tapolcai, E. R. Bérczi-Kovács, Z. Király, and
L. Rónyai, “Minimum cost survivable routing algorithms for generalized
diversity coding,” IEEE/ACM Trans. Netw., 2020.

[3] B. Mukherjee, M. Habib, and F. Dikbiyik, “Network adaptability from
disaster disruptions and cascading failures,” IEEE Commun. Mag.,
vol. 52, no. 5, pp. 230–238, 2014.

[4] J. Rak, R. Girão-Silva, T. Gomes, G. Ellinas, B. Kantarci, and M. Torna-
tore, “Disaster resilience of optical networks: State of the art, challenges,
and opportunities,” Optical Switching and Networking, 2021.

[5] P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman,
and G. Zussman, “The resilience of WDM networks to probabilistic
geographical failures,” IEEE/ACM Trans. Netw., vol. 21, no. 5, 2013.

[6] J. Oostenbrink and F. Kuipers, “Computing the impact of disasters on
networks,” ACM SIGMETRICS Performance Evaluation Review, 2017.

[7] F. Dikbiyik, M. Tornatore, and B. Mukherjee, “Minimizing the risk
from disaster failures in optical backbone networks,” J. Lightw. Technol.,
vol. 32, no. 18, pp. 3175–3183, 2014.

[8] J. Heidemann, L. Quan, and Y. Pradkin, A preliminary analysis of
network outages during hurricane Sandy. University of Southern
California, Information Sciences Institute, 2012.

[9] G. Ellinas, E. Bouillet, R. Ramamurthy, J.-F. Labourdette, S. Chaudhuri,
and K. Bala, “Routing and restoration architectures in mesh optical
networks,” Optical Networks Magazine, vol. 4, no. 1, pp. 91–106,
January/February 2003.

[10] H. Saito, “Analysis of geometric disaster evaluation model for physical
networks,” IEEE/ACM Trans. Netw., vol. 23, no. 6, pp. 1777–1789, 2015.

[11] J. Liu, J. Zhang, Y. Zhao, C. Ma, H. Yang, W. Li, J. Xin, and
B. Chen, “Differentiated quality-of-protection provisioning with prob-
abilistic SRLG in flexi-grid optical networks,” in OSA Asia Communi-
cations and Photonics Conference, 2013, pp. AF2G–8.

[12] S. Trajanovski, F. A. Kuipers, A. Ilić, J. Crowcroft, and P. Van Mieghem,
“Finding critical regions and region-disjoint paths in a network,”
IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 908–921, 2015.

[13] E. Bérczi-Kovács, P. Gyimesi, B. Vass, and J. Tapolcai, “DateLine:
efficient algorithm for computing region disjoint paths in backbone
networks,” IEEE J. on Selected Areas in Communications, pp. 1–14,
Jan. 2025.

[14] H.-W. Lee, E. Modiano, and K. Lee, “Diverse routing in networks with
probabilistic failures,” IEEE/ACM Trans. Netw., vol. 18, no. 6, 2010.

[15] B. Vass, J. Tapolcai, Z. Heszberger, J. Bíró, D. Hay, F. A.
Kuipers, J. Oostenbrink, A. Valentini, and L. Rónyai, “Probabilis-
tic shared risk link groups modelling correlated resource failures
caused by disasters,” IEEE J. on Selected Areas in Communications,
2021, Data produced available at https://github.com/jtapolcai/regional-
srlg/blob/master/psrlg/JSACdata.zip.

[16] E. Ayanoglu, C.-L. I, R. Gitlin, and J. Mazo, “Diversity coding for
transparent self-healing and fault-tolerant communication networks,”
IEEE Transactions on Communications, vol. 41, no. 11, 1993.

[17] E. Bérczi-Kovács, P. Gyimesi, B. Vass, and J. Tapolcai, “Efficient
algorithm for region-disjoint survivable routing in backbone networks,”
in IEEE INFOCOM, May 2024.

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE J. on Selected Areas in Communications,
vol. 29, no. 9, pp. 1765–1775, 2011.

[19] J. L. Gross and S. R. Alpert, “The topological theory of current
graphs,” Journal of Combinatorial Theory, Series B, vol. 17, no. 3,
pp. 218–233, 1974. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0095895674900288

[20] A. Pašić, R. G. ao Silva, F. Mogyorósi, B. Vass, T. Gomes,
P. Babarczi, P. Revisnyei, J. Tapolcai, and J. Rak, “eFRADIR: An
Enhanced FRAmework for DIsaster Resilience,” IEEE Access, vol. 9,
pp. 13 125–13 148, 2021. [Online]. Available: https://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=9319646

[21] M. R. Garey and D. S. Johnson, Computers and intractability. San
Francisco, Calif.: W. H. Freeman and Co., 1979, a guide to the theory
of NP-completeness, A Series of Books in the Mathematical Sciences.

[22] I. Dinur and S. Safra, “On the hardness of approximating minimum
vertex cover,” Annals of mathematics, pp. 439–485, 2005.

[23] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[24] F. Duan, “A faster algorithm for shortest path-spfa,” Journal of Southwest
Jiaotong University, vol. 29, no. 6, pp. 207–212, 1994.

[25] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for network
problems,” SIAM Journal on Computing, vol. 18, no. 5, 1989.

[26] A. Bernstein, D. Nanongkai, and C. Wulff-Nilsen, “Negative-weight
single-source shortest paths in near-linear time,” in 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), 2022.

[27] Y. Kobayashi and K. Otsuki, “Max-flow min-cut theorem and faster
algorithms in a circular disk failure model,” in IEEE INFOCOM, April
2014.

[28] K. Otsuki, Y. Kobayashi, and K. Murota, “Improved max-flow min-cut
algorithms in a circular disk failure model with application to a road
network,” European Journal of Operational Research, vol. 248, 2016.

[29] B. Vass, E. Bérczi-Kovács, A. Barabás, Z. L. Hajdú, and J. Tapolcai,
“Polynomial-time algorithm for the regional SRLG-disjoint paths prob-
lem,” in IEEE INFOCOM, London, United Kingdom, May 2022.

[30] H. Zhang, B. Wang, and S. Wang, “A novel method of high-speed all-
optical logic gate based on metalens,” Optics Communications, 2025.

[31] J.-Q. Hu, “Diverse routing in optical mesh networks,” IEEE Trans.
Communications, vol. 51, pp. 489–494, 2003.

[32] J.-C. Bermond, D. Coudert, G. D’Angelo, and F. Z. Moataz, “SRLG-
diverse routing with the star property,” in Proc. Design of Reliable
Communication Networks (DRCN). IEEE, 2013, pp. 163–170.

[33] ——, “Finding disjoint paths in networks with star shared risk link
groups,” Theoretical Computer Science, vol. 579, pp. 74–87, 2015.

[34] X. Luo and B. Wang, “Diverse routing in WDM optical networks with
shared risk link group (SLRG) failures,” in Proc. Design of Reliable
Communication Networks (DRCN), Oct. 16-19 2005.

[35] D. Xu, G. Li, B. Ramamurthy, A. Chiu, D. Wang, and R. Doverspike,
“SRLG-diverse routing of multiple circuits in a heterogeneous optical
transport network,” in Proc. Design of Reliable Communication Net-
works (DRCN), 2011, pp. 180–187.

[36] T. Gomes, M. Soares, J. Craveirinha, P. Melo, L. Jorge, V. Mirones,
and A. Brízido, “Two heuristics for calculating a shared risk link group
disjoint set of paths of min-sum cost,” Journal of Network and Systems
Management, vol. 23, no. 4, pp. 1067–1103, 2015.

[37] A. de Sousa, D. Santos, and P. Monteiro, “Determination of the
minimum cost pair of D-geodiverse paths,” in Proc. Design of Reliable
Communication Networks (DRCN), Munich, Germany, March 8-10
2017.

[38] R. Girão-Silva, B. Nedic, M. Gunkel, and T. Gomes, “Shared Risk Link
Group disjointness and geodiverse routing: A trade-off between benefit
and practical effort,” Networks, vol. 75, no. 4, pp. 374–391, 2020.

[39] K. Xie, H. Tao, X. Wang, G. Xie, J. Wen, J. Cao, and Z. Qin, “Divide
and conquer for fast SRLG disjoint routing,” in IEEE/IFIP Dependable
Systems and Networks (DSN), 2018, pp. 622–633.

[40] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in IEEE INFOCOM, 2014.

[41] B. Vass, J. Tapolcai, D. Hay, J. Oostenbrink, and F. Kuipers, “How to
model and enumerate geographically correlated failure events in com-
munication networks,” in Guide to Disaster-Resilient Communication
Networks. Springer, 2020, pp. 87–115.

[42] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1610–1623, 2011.

[43] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-flow and
min-cut under a circular disk failure model,” in IEEE INFOCOM, 2012.

[44] B. Vass, E. Bérczi-Kovács, A. Barabás, Z. L. Hajdú, and J. Tapolcai,
“A whirling dervish: Polynomial-time algorithm for the regional srlg-
disjoint paths problem,” IEEE/ACM Trans. Netw., 2023.

[45] A. Valentini, B. Vass, J. Oostenbrink, L. Csák, F. Kuipers, B. Pace,
D. Hay, and J. Tapolcai, “Network resiliency against earthquakes,” in
Resilient Networks Design and Modeling (RNDM), Oct 2019, pp. 1–7.

[46] A. Sieberg, “Erdebeben,” Handbuch der Geophysic, vol. 4, 1931.
[47] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numer. Math., vol. 1, pp. 269–271, 1959.
[48] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, 1974.
[49] Stack Overflow user. (2020) Answer explaining how to find

a most reliable path with Dijkstra’s algorithm. Accessed: 2025.
[Online]. Available: https://stackoverflow.com/questions/64991937/
find-the-most-reliable-path-dijkstra-s-algorithm

